DOI QR코드

DOI QR Code

Seismic Capacity Evaluation of Existing R/C Buildings Retrofitted by Internal Composite Seismic Strengthening Method Based on Pseudo-dynamic Testing

유사동적실험기반 내부접합형 합성내진보강공법을 적용한 기존 R/C 건물의 내진성능평가

  • 이은경 (한양대학교 대학원 스마트시티공학과) ;
  • 김진영 (한양대학교 대학원 건축시스템공학과) ;
  • 백호진 (한양대학교 대학원 건축공학과 ) ;
  • 이강석 (한양대학교 건축학부 및 스마트시티공학과)
  • Received : 2023.03.24
  • Accepted : 2023.04.13
  • Published : 2023.04.30

Abstract

In this study, in order to enhance the joint capacity between the existing reinforced concrete (R/C) frame and the reinforcement member, we proposed a novel concept of Internal Composite Seismic Strengthening Method (CSSM) for seismic retrofit of existing domestic medium-to-low-rise R/C buildings. The Internal CSSM rehabilitation system is a type of strength-enhancing reinforcement systems, to easily increase the ultimate horizontal shear capacity of R/C structures without seismic details in Korea, which show shear collapse mechanism. Two test specimens of full-size two-story R/C frame were fabricated based on an existing domestic R/C building without seismic details, and then retrofitted by using the proposed CSSM seismic system; therefore, one control test specimen and one test specimen reinforced with the CSSM system were used. Pseudo-dynamic testing was carried out to evaluate seismic strengthening effects, and the seismic response characteristics of the proposed system, in terms of the maximum shear force, response story drift, and seismic damage degree compared with the control specimen (R/C bare frame). Experiment results indicated that the proposed CSSM reinforcement system, internally installed to the existing R/C frame, effectively enhanced the horizontal shear force, resulting in reduced story drift of R/C buildings even under a massive earthquake.

본 연구에서는 기존 내력증진형 내진보강공법의 취약점을 개선 및 보완할 수 있는 새로운 개념의 내진보강법인 내부접합형 합성내진보강공법 (Composite Seismic Strengthening Method, CSSM)을 제안하였다. CSSM 내진보강 시스템은 필요 내진보강량 산정이 간편한 강도증진형 내진보강법의 일종으로서, 전단파괴가 지배적인 우리나라 내진상세를 가지지 않는 기존 R/C 건물에 적용 시 내력증가가 효율적으로 가능한 내진 시스템 공법이다. 제안한 내부접합형 CSSM 공법의 내진안전성을 검토하기 위하여 내진상세를 가지지 않는 우리나라 R/C 건축물을 바탕으로 한 실물 2층 골조 실험체를 대상으로 유사동적실험을 실시하여, 지진에 대한 하중 및 변위 특성, 지진피해수준, 강도증진 효과, 변위제어능력을 중심으로 내진성능을 평가하였다. 유사동적 실험결과 개발공법인 CSSM 내진시스템은 효과적으로 전단내력을 증가시켰으며, 2400년 재현주기인 지진파에 대해서도 지진에 대한 변위를 효과적으로 억제시켰다.

Keywords

Acknowledgement

본 연구는 한국연구재단(과제번호: 2021R1A2C2094779) 연구비 지원으로 수행된 연구임.

References

  1. Architectural Institute of Korea (AIK). (2018), Site Inspection and Damage Investigation of Buildings by Earthquakes in Gyoungju and Pohang, 347.
  2. Federal Emergency Management Agency (FEMA) 356. (2000), Prestandard and Commentary for Seismic Rehabilitation of Buildings, Washington, DC., 500.
  3. Japan Building Disaster Prevention Association (JBDPA). (2017), Guideline for Seismic Strengthening of Existing Reinforced Concrete Buildings, Tokyo, Japan, 450.
  4. Seismic Strengthening Research Group (SSRG). (2008), Seismic Strengthening of RC Buildings, Ohmsha Press, Tokyo, Japan, 230.
  5. Lee, K. S., and Jung, J. S. (2018), A Seismic Capacity of R/C Building Damaged by the 2016 Gyeongju Earthquake Based on the Non-linear Dynamic Analysis, Journal of the Korea Institute of Structural Maintenance and Inspection, 22(1), 137-146.
  6. KS B 0801. (2017), Test pieces for tension test for metallic materials. Korean Industrial Standards, Korea.
  7. Ministry of Eduaction (MOE) and Korea Institute of Educational Environment (KIEE). (2011), Guideline for Seismic Evaluation and Rehabilitation of Existing School Buildings in Korea, 108.
  8. Korean Design Standard 41 (KDS 41). (2019), Korean design standard 41. Architectural Institute of Korea, Seoul, Korea.
  9. Lee, K. S. (2010), Seismic Capacity Requirementd for Low-Rise R/C Buildings Controlled by Both Shear and Flexure, Journal of Advanced Concrete Technology, 8(1), 75-91. https://doi.org/10.3151/jact.8.75
  10. Umemura, H. (1973), Earthquake Resistant Design of Reinforced Concrete Buildings, Accounting for the Dynamic Effects of Earthquakes, Giho-do Publishing Co., Japan. 650.
  11. Takanashi, K., Udagawa, K., and Tanaka, H. (1980), Pseudodynamic tests on a 2-storey steel frame by a computer-load test apparatus hybrid system, proceedings of the Seventh World Conference on Earthquake Engineering, Istanbul, Turkey, 7, 225-232.
  12. Tokyo Soki Kenkyujo Company (TSKC): DA-16A. (2023), Tokyo, Japan. https://www.tml.jp/e/.
  13. MTS. (2002), Pseudodynamic testing for 793 controllers. MTS Systems Corporation, Eden Prairie, MI, USA.
  14. Hilber, H. M., Hughes, T. J., and Taylor, R. L. (1977), Improved numerical dissipation for time integration algorithms in structural dynamics, Earthq Eng Struct Dyn, 5(3), 283-292. https://doi.org/10.1002/eqe.4290050306
  15. Japan Building Disaster Prevention Association (JBDPA). (2015), Standard for damage level classification, Tokyo, Japan. 310.
  16. Maeda, M., Nakano, Y., and Lee, K. S. (2004), Post-Earthquake Damage Evaluation for R/C Buildings Based on Residual Seismic Capacity, Proceedings of 13th World Conference on Earthquake Engineering, 1179, Vancouver, Canada.