• Title/Summary/Keyword: Reinforced particles

Search Result 237, Processing Time 0.023 seconds

Development of fiber reinforced self-compacting concrete (FRSCC): Towards an efficient utilization of quaternary composite binders and fibers

  • Fediuk, Roman;Mosaberpanah, Mohammad A.;Lesovik, Valery
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.387-395
    • /
    • 2020
  • This study has been carried out in two-phases to develop Fiber Reinforced Self-Compacting Concrete (FRSCC) performance. In the first phase, the composition of the quaternary composite binder compromised CEM I 42.5N (58-70%), Rice Husk Ash (25-37%), quartz sand (2.5-7.5%) and limestone crushing waste (2.5-7.5%) were optimized. And in the second phase, the effect of two fiber types (steel brass-plated and basalt) was investigated on the SCC optimized with the optimum CB as disperse reinforcement at 6 different ratios of 1, 1.2, 1.4, 1.6, 1.8, and 2.0% by weight of mix for each type. In this study, the theoretical principles of the synthesis of self-compacting dispersion-reinforced concrete have been developed which consists of optimizing structure-formation processes through the use of a mineral modifier, together with ground crushed cement in a vario-planetary mill to a specific surface area of 550 m2 / kg. The amorphous silica in the modifier composition intensifies the binding of calcium hydroxide formed during the hydration of C3S, helps reduce the basicity of the cement-composite, while reducing the growth of portlandite crystals. Limestone particles contribute to the formation of calcium hydrocarbonate and, together with fine ground quartz sand; act as microfiller, clogging the pores of the cement. Furthermore, the results revealed that the effect of fiber addition improves the mechanical properties of FRSCC. It was found that the steel fiber performed better than basalt fiber on tensile strength and modulus of elasticity; however, both fibers have the same performance on the first crack strength and sample destruction of FRSCC. It also illustrates that there will be an optimum percentage of fiber addition.

Wedge Splitting Test and Fracture Energy on Particulate Reinforced Composites (입자강화 복합재료의 쐐기분열시험 및 파괴에너지 평가)

  • Na, Seong Hyeon;Kim, Jae Hoon;Choi, Hoon Seok;Park, Jae Beom;Kim, Shin Hoe;Jung, Gyoo Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.253-258
    • /
    • 2016
  • The effect of temperature on the fracture energy, crack propagation, and crack tip opening displacement (CTOD) was determined for particulate reinforced composites using the wedge splitting test. The materials that were used consisted of a polymer binder, an oxidizing agent, and aluminum particles. The test rate of the wedge splitting specimen was 50 mm/min, the temperature conditions were $50^{\circ}C$, room temperature, $-40^{\circ}C$, and $-60^{\circ}C$. The fracture energy, calculated from splitting load-crack mouth opening displacement(CMOD) curves, increased with decreasing temperature from $50^{\circ}C$ to $-40^{\circ}C$. In addition, the strength of the particulate reinforced composites increased sharply at $-60^{\circ}C$, and the composites evidenced brittle fracture due to the glass transition temperature. The strain fields near the crack tip were analyzed using digital image correlation.

Computer Simulation of the Effects of Content and Dispersion of Impact Modifier on the Impact Strength of Nylon 6 Composites (충격보강제의 함유량과 분산이 나일론 6 복합체의 충격강도에 미치는 영향의 컴퓨터 해석)

  • Woo, Jeong Woo;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.49 no.4
    • /
    • pp.284-292
    • /
    • 2014
  • Polymer has low mechanical strength than metal. In particular, the impact strength is very weak. Impact modifier reinforced polymers are frequently used. Impact strength of reinforced polymer is changed according to content and distribution of impact modifier. In this study, izod impact test has been simulated to analyze the mechanism of impact modifier reinforced Nylon 6. Computational results were compared for numbers and distributions of impact modifier. As the total volume of rubber particles decreased, the stress at the notch increased for the simulation model that the volume decreases as particle number increases. As the surface area of particle sphere increased, the stress and difference of principle stress increased for the simulation model that the total surface increases as particle number increases.

Anisotropic Mechanical Properties of Tantalum-Continuous-Fiber-Reinforced Zr-based Amorphous Matrix Composites Fabricated by Liquid Pressing Process (액상가압공정으로 제조된 탄탈륨 연속섬유 강화 Zr계 비정질 복합재료의 기계적 성질의 이방성)

  • Lee, Kyuhong;Lee, Sang-Bok;Lee, Sang-Kwan;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.542-549
    • /
    • 2009
  • Zr-based amorphous alloy matrix composites reinforced with tantalum continuous fibers were fabricated by the liquid pressing process, and their anisotropic mechanical properties were investigated by tensile and compressive tests of $0^{\circ}$(longitudinal)-, $45^{\circ}$-, and $90^{\circ}$(transverse)-orientation specimens. About 60 vol.% of tantalum fibers were homogeneously distributed inside the amorphous matrix, which contained a small amount of polygonal crystalline particles. The ductility of the tantalum-continuous-fiber-reinforced composite under tensile or compressive loading was dramatically improved over that of the monolithic amorphous alloy, while maintaining high strength. When the fiber direction was not matched with the loading direction, the reduction of the strength and ductility was not serious because of excellent fiber/matrix interfacial strength. Observation of the anisotropic deformation and fracture behavior showed the formation of multiple shear bands, the obstruction of crack propagation by fibers, and the deformation of fibers themselves, thereby resulting in tensile elongation of 3%~4% and compressive elongation of 15%~30%. These results suggest that the liquid pressing process was useful for the development of amorphous matrix composites with excellent ductility and anisotropic mechanical properties.

Effects of ceramic fillers on fracture resistance of barrier ribs of PDP

  • Baek, Se-Kyung;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.552-554
    • /
    • 2004
  • Barrier ribs of plasma display panel (PDP) are glass matrix composite reinforced with alumina particles. Mechanical properties of the ribs are very crucial for the improvement in reliability of the panel as the ribs might fracture during transportation and service. In this study, therefore, the effects of filler type and content on the mechanical properties of the ribs were investigated. The fillers used include $Al_2O_3$, $TiO_2$, $ZrO_2$ and fused silica. The content of the filler was changed from 0 to 40 vol.%. The mechanical properties of the ribs measured were hardness, Young's modulus, fracture toughness, and 3-point bending modulus. The fracture toughness evaluated by micro-Vicker's indentation of the composites, in general, was measured to increase with the content of the filler until the sintered density does not decrease significantly. The improvement, however, was dependent on the type of filler employed.

  • PDF

Evaluation of Elastic Modulus in a Particulate Reinforced Composite by Shape Memory Effect (형상기억입자 강화 복합체의 탄성계수 평가)

  • Kim, Hong-Geon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.25-31
    • /
    • 2001
  • The theoretical modeling to predict the modulus of elasticity by the shape memory effect of dispersed particles in a metal matrix composite was studied. The modeling approach is based on the Eshelbys equivalent inclusion method and Mori-Tanakas mean field theory. The calculation was performed on the TiNi particle dispersed Al metal matrix composites(PDMMC) with varying volume fractions and prestrains of the particle. It was found that the prestrain has no effect on the Yonugs modulus of PDMMC but the volume fraction does affects it. This approach has an advantage of definite control of Youngs modulus in PDMMCs.

Characteristics of Nano-particles Exhausted from Heavy-duty Diesel Vehicles with Low Emission Technology (대형경유차 저공해기술 적용에 따른 나노입자 배출특성)

  • Lim Cheol-Soo;Yoo Jung-Ho;Eom Myoung-Do;Hwang Jin-Woo;Kim Ye-Eun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.2
    • /
    • pp.225-236
    • /
    • 2004
  • Diesel engines which emit a lot of PM and NOx have been known as a main air polluter. Especially, diesel particulate matters (OPM) including black smoke are hazardous air pollutants to human health and environment. The nations retaining advanced engine technologies have reinforced emission regulations. To meet these regulations diesel engine manufacturers have developed low-emission diesel engines, aftertreatment equipments, alternative fuel technologies and so on. In this study, particle number concentrations characteristics according to particle size and engine driving conditions were analyzed when these low-emission technologies were applied. There was a tendency of increasing particle number concentrations from heavy-duty diesel engines with increasing engine rpm and load rate. In the cases of COPF (Catalytic Diesel Particulate Filter), CNG (Compressed Natural Gas) engine and ULSD (Ultra Low Sulfur Diesel) more than 99% of particle number concentration were removed.

Effects of SiC Cluster on Mechanical Properties of the 2024A1/$SiC_p$ Composites (2024A1/$SiC_p$복합재료의 기계적특성에 미치는 SiC클러스터의 영향)

  • 김홍물;천병선
    • Journal of Powder Materials
    • /
    • v.8 no.2
    • /
    • pp.124-130
    • /
    • 2001
  • A centrifugally atomized 2024A1/SiC/sub p/ composites were extruded to study effect of clusters on mechanical properties, and a model was proposed that the strength of MMCs would be estimated from the load transfer model approach that taken into consideration of the clusters. This model has been successfully utilized to predict the strength and fracture toughness of MMCs. The experimental and calculated results show coincidence and that the fracture toughness decreases with increasing the volume fraction of particles. On the basis of experimental observations, we suggest that the strength and fracture toughness of particle reinforced MMCs may be calculated from; σ/sub y/=σ/sub m/V/sub m/+σ/sub r/(V/sub r/-V/sub c)-σ/sub r/V/sub c/, K/sub IQ/=σ/sub Y/((3πt)((r/sub r//V/sub r/)(r/sub c//V/sub c/))/sup 1/2/)/sup 1/2/, respectively.

  • PDF

Effect of SiC mean particle size on mechanical properties and microstructure of $Si_{3}N_{4}/SiC$ nanocomposites (SiC 입자크기가 $Si_{3}N_{4}/SiC$ 초미립복합재료의 기계적 특성과 미세구조에 미치는 영향)

  • 황광택;김창삼;정덕수;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.392-398
    • /
    • 1996
  • $Si_{3}N_{4}/SiC$ nanocomposites reinforced with tow different mean particle size were fabricated by hot press. Grain growth of matrix gran was inhibited by adding of SiC particles, and then number of equiaxed and fine grains were increased. The effect of grain growth inhibition was higher in the nanocomposites dispersed small size SiC. herefore fracture strength and hardness were increased, but fracture toughness was decreased in small size SiC dispersed samples.

  • PDF

Effect of Reinforcements on Dynamic Elastic Modulus of Polyethylene Matrix Composite Materials (폴리에틸렌기지 복합재료의 동적탄성계수에 대한 강화재의 효과)

  • 김경섭;정현규;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.1-4
    • /
    • 1999
  • The attenuation coefficients of SiC particle reinforced low-density polyethylene (LDPE) matrix composites were measured by pulse echo method and dynamic elastic measure method with varying the volume fraction of SiC particle ranged from 0% to 40% and the size of SiC particles ranged from 0.8$\mu$m to 48$\mu$m. The SiCp/LDPE composites were fabricated with the melt injection process and the fabricated composites showed almost full density above 99% up to 40vo1% SiCp reinforcements. The attenuation constant of LDPE measured by dynamic elastic constant had same result with that measured by pulse echo method, but the attenuation constant of SiCp/LDPE measured by dynamic elastic constant did not have same result with that measured by pulse echo method.

  • PDF