Browse > Article

Anisotropic Mechanical Properties of Tantalum-Continuous-Fiber-Reinforced Zr-based Amorphous Matrix Composites Fabricated by Liquid Pressing Process  

Lee, Kyuhong (Materials and Processes Engineering, Samsung Techwin Co., Ltd)
Lee, Sang-Bok (Composite Materials Laboratory, Korea Institute of Materials Science)
Lee, Sang-Kwan (Composite Materials Laboratory, Korea Institute of Materials Science)
Lee, Sunghak (Center for Advanced Aerospace Materials, Pohang University of Science and Technology)
Publication Information
Korean Journal of Metals and Materials / v.47, no.9, 2009 , pp. 542-549 More about this Journal
Abstract
Zr-based amorphous alloy matrix composites reinforced with tantalum continuous fibers were fabricated by the liquid pressing process, and their anisotropic mechanical properties were investigated by tensile and compressive tests of $0^{\circ}$(longitudinal)-, $45^{\circ}$-, and $90^{\circ}$(transverse)-orientation specimens. About 60 vol.% of tantalum fibers were homogeneously distributed inside the amorphous matrix, which contained a small amount of polygonal crystalline particles. The ductility of the tantalum-continuous-fiber-reinforced composite under tensile or compressive loading was dramatically improved over that of the monolithic amorphous alloy, while maintaining high strength. When the fiber direction was not matched with the loading direction, the reduction of the strength and ductility was not serious because of excellent fiber/matrix interfacial strength. Observation of the anisotropic deformation and fracture behavior showed the formation of multiple shear bands, the obstruction of crack propagation by fibers, and the deformation of fibers themselves, thereby resulting in tensile elongation of 3%~4% and compressive elongation of 15%~30%. These results suggest that the liquid pressing process was useful for the development of amorphous matrix composites with excellent ductility and anisotropic mechanical properties.
Keywords
composite; amorphous alloy; liquid pressing process; anisotropic mechanical properties;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 J. G. Lee, S. S. Park, D.-G. Lee, S. Lee, and N. J. Kim, Intermetallics 12, 1125 (2004)   DOI   ScienceOn
2 H. A. Bruck, T. Christman, and W. L. Johnson, Scr. Metall. 30, 429 (1994)   DOI
3 F. R. Cichocki Jr. and J. L. Thomason, Composite Sci. Technology 62, 669 (2002)   DOI   ScienceOn
4 C. T. Herakovich, Mechanics of Fibrous Composites, p. 303-361, John Wiley & Sons, New York (1998)
5 Y. Kawamura, T. Shibata, A. Inoue, and T. Masumoto, Appl. Phys. Lett. 69, 1208 (1996)   DOI   ScienceOn
6 S. H. Lee and A. M. Waas, Internationl J. Fracture 100, 275 (1999)   DOI
7 K.-W. Park, M. Wakeda, Y. Shibutani, E. Fleury, and J.-C. Lee, Met. Mater. Int. 14, 159 (2008)   DOI   ScienceOn
8 A. Peker and W.L. Johnson, Appl. Phys. Lett. 63, 2342 (1993)   DOI   ScienceOn
9 K. Lee, S. B. Lee, S. K. Lee, and S. Lee, J. Kor. Inst. Met. & Mater. 46, 524 (2008)
10 W. H. Wang, C. Dong, and C. H. Shek, Mater. Sci. Eng. R44, 45 (2004)
11 S. B. Lee, K. Lee, S. K. Lee, and S. Lee, J. Kor. Inst. Met. & Mater. 45, 435 (2007)
12 S.-J. Lee, B.-G. Yoo, J.-I. Jang, and J.-C. Lee, Met. Mater. Int. 14, 9 (2008)   DOI   ScienceOn
13 Y. H. Jang, S. S. Kim, Y. C. Jung, and S. K. Lee, J. Kor. Inst. Met. & Mater. 42, 425 (2004)
14 S. G. Warrier, P. Rangaswamy, M. A. M Bourke, and S. Krishnamurthy, Mater. Sci. Eng. A259, 220 (1999)   DOI   ScienceOn
15 K. Lee, K. Euh, D. H. Nam, S. Lee, and N. J. Kim, Mater. Sci. Eng. A449-451, 937 (2007)   DOI   ScienceOn
16 G. E. Dieter, Mechanical Metallurgy, SI Metric Ed., p.220, McGraw-Hill, London (1988)
17 C. C. Hays, C. P. Kim, and W. L. Johnson, Phys. Rev. Lett 84, 2901 (2000)   DOI   PUBMED   ScienceOn
18 L. Q. Xing, C. Bertrand, J. P. Dallas, and M. Cornet, Mater. Sci. Eng. A241, 216 (1998)   DOI   ScienceOn