• Title/Summary/Keyword: Reinforced concrete frame

Search Result 665, Processing Time 0.021 seconds

A graphical user interface for stand-alone and mixed-type modelling of reinforced concrete structures

  • Sadeghian, Vahid;Vecchio, Frank
    • Computers and Concrete
    • /
    • v.16 no.2
    • /
    • pp.287-309
    • /
    • 2015
  • FormWorks-Plus is a generalized public domain user-friendly preprocessor developed to facilitate the process of creating finite element models for structural analysis programs. The lack of a graphical user interface in most academic analysis programs forces users to input the structural model information into the standard text files, which is a time-consuming and error-prone process. FormWorks-Plus enables engineers to conveniently set up the finite element model in a graphical environment, eliminating the problems associated with conventional input text files and improving the user's perception of the application. In this paper, a brief overview of the FormWorks-Plus structure is presented, followed by a detailed explanation of the main features of the program. In addition, demonstration is made of the application of FormWorks-Plus in combination with VecTor programs, advanced nonlinear analysis tools for reinforced concrete structures. Finally, aspects relating to the modelling and analysis of three case studies are discussed: a reinforced concrete beam-column joint, a steel-concrete composite shear wall, and a SFRC shear panel. The unique mixed-type frame-membrane modelling procedure implemented in FormWorks-Plus can address the limitations associated with most frame type analyses.

Seismic response assessment of high-strength concrete frames strengthened with carbon fiber reinforced polymers

  • Rahmdel, Javad Mokari;Vahid-Vahdattalab, Farzin;Shafei, Erfan;Zirakian, Tadeh
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.735-744
    • /
    • 2021
  • In recent years, the use of new materials and technologies with the aim of developing high-performing and cost-effective structures has greatly increased. Application of high-strength concrete (HSC) has been found effective in reducing the dimensions of frame members; nonetheless, such reduction in dimensions of structural elements in the most cases may result in the lack of accountability in the tolerable drift capacity. On this basis, strengthening of frame members using fiber reinforced polymers (FRPs) may be deemed as an appropriate remedy to address this issue, which albeit requires comprehensive and systematic investigations. In this paper, the performance of properly-designed, two-dimensional frames made of high-strength concrete and strengthened with Carbon Fiber Reinforced Polymers (CFRPs) is investigated through detailed numerical simulation. To this end, nonlinear dynamic time history analyses have been performed using the Seismosoft software through application of five scaled earthquake ground motion records. Unstrengthened (bare) and strengthened frames have been analyzed under seismic loading for performance assessment and comparison purposes. The results and findings of this study show that use of CFRP can be quite effective in seismic response improvement of high-strength-concrete structures.

Shaking Table Test of a 1/5 Scale 3-Story Nonductile infilled Reinforced Concrete Frame (조적채움벽이 있는 1/5 축소 3층 비연성 철근콘크리트 골조의 진동대 실험)

  • 이한선;우성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.541-546
    • /
    • 1998
  • The objective of this research is to observe the actual response of low-rise nonseismic moment-resisting infilled reinforced concrete frame subjected to varied levels of earthquake ground motions. First of all, the reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used. This model was, then, subjected to the shaking table motions simulating Taft N21E component earthquake ground motions, whose peak ground accelerations(PGA`s) were modified to 0.12g, 0.2g, 0.3g, and 0.4g. The global behavior and failure mode were observed. The lateral accelerations and displacements at each story and local deformations at the critical portions of structure were measured. Before and after each earthquake simulation test, free vibration tests were performed to find the changes in the natural period of the model.

  • PDF

Correlation of the Experimental and Analytical Inelastic Response of a 1/12-Scale 10-Story Reinforced Concrete Frame with Nonseismic Detail (비내진 상세를 가지 10층 R.C. 골조의 비선형 거동에 대한 실험과 해석의 상관성 연구)

  • 이한선;강귀용;김정우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.535-540
    • /
    • 1998
  • Nowadays, the pushover analysis technique is becoming a very useful tool for the prediction of inelastic behavior of structures in the seismic evaluation of existing buildings in the worldwide. However, the reliability of this analysis method has not been fully checked by the test results. The objective of this study is to verify the correlation between the experimental and analytical response of a high-rise nonseismic reinforced concrete frame using DRAIN-2DX program and the test results performed previously. This study concludes that the overall responses such as story-shear versus story-drift can be predicted with quite high reliability while the local deformations such as plastic rotations in the ends of critical members can not be described reasonably.

  • PDF

Shaking Table Tests of A 1/12-Scale Reinforced Concrete Upper-Wall Lower-Frame Structure (1/12 축소 철근콘크리트 주상복합구조물의 진동대실험)

  • 이한선;김상연;고동우;권기혁;김병현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.139-144
    • /
    • 2001
  • The objective of this study is to investigate the behavior of 1/12 scale upper-wall lower-frame reinforced concrete structure subjected to earthquake excitations. For this purpose, Taft N21E earthquake accelerogram was simulated by using 4m$\times$4m shaking table. When the input acceleration is compared to that of output, it was found that simulation of shaking table is satisfactory. From the test results with peak ground acceleration(PGA) 0.22g, which corresponds to 0.11g in prototype by the similitude law, it can be observed that the model responded in elastic behavior and that large interstory drift occurred at the lower part of the structure.

  • PDF

Damage-Based Seismic Performance Evaluation of Reinforced Concrete Frames

  • Heo, YeongAe;Kunnath, Sashi K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.175-182
    • /
    • 2013
  • A damage-based approach for the performance-based seismic assessment of reinforced concrete frame structures is proposed. A new methodology for structural damage assessment is developed that utilizes response information at the material level in each section fiber. The concept of the damage evolution is analyzed at the section level and the computed damage is calibrated with observed experimental data. The material level damage parameter is combined at the element, story and structural level through the use of weighting factors. The damage model is used to compare the performance of two typical 12-story frames that have been designed for different seismic requirements. A series of nonlinear time history analyses is carried out to extract demand measures which are then expressed as damage indices using the proposed model. A probabilistic approach is finally used to quantify the expected seismic performance of the building.

Development of Rerofitting System for the Remodeling of Reinforced Concrete Frame Using High Ductile Fiber Composite Mortar PC Panel (고인성섬유 복합모르타르 PC판넬을 활용한 철근콘크리트 골조의 리모델링을 위한 보강시스템 개발)

  • Ha, Gee-Joo;Shin, Jong-Hak;Kim, Yun-Yong;Hong, Kun-Ho;Yang, Seung-Hyeok;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.66-69
    • /
    • 2006
  • Three reinforced concrete rigid frames and infilled rigid frames with new retrofitting system were tested under both vertical and cyclic loadings, Experimental programs were carried out to evaluate and improve the seismic performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. under load reversals. All the specimens were modeled in one-third scale size. For specimens(RFHPC, RFAR) designed by the improving of seismic performance of the rigid frame using the high ductile fiber composite PC panel and ALC panel system, load-carrying capacities were increased $1.45{\sim}2.28$ times, and hysteretic behavior was very stable during the final tests in comparison with the standard specimen(SRF).

  • PDF

Application of the Direct Displacement Based Design Methodology for Different Types of RC Structural Systems

  • Malekpour, Saleh;Dashti, Farhad
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.2
    • /
    • pp.135-153
    • /
    • 2013
  • This study investigates the direct displacement based design (DDBD) approach for different types of reinforced concrete structural systems including single moment-resisting, dual wall-frame and dual steel-braced systems. In this methodology, the displacement profile is calculated and the equivalent single degree of freedom system is then modeled considering the damping characteristics of each member. Having calculated the effective period and secant stiffness of the structure, the base shear is obtained, based on which the design process can be carried out. For each system three frames are designed using DDBD approach. The frames are then analyzed using nonlinear time-history analysis with 7 earthquake accelerograms and the damage index is investigated through lateral drift profile of the models. Results of the analyses and comparison of the nonlinear time-history analysis results indicate efficiency of the DDBD approach for different reinforced concrete structural systems.

Etructural Performance Evaluation of Columns in a Reinforced Concrete Ordinary Moment Frame Building (철근콘크리트 보통모멘트조건물의 기두에 대한 구조성능 평가)

  • 배성진;한상환;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.440-445
    • /
    • 2000
  • The purpose of this study is to investigate the structural performance of columns in an Reinforced Concrete Ordinary Moment Frame building. For this purpose, a 3-story building was designed according to the Korea seismic design provisons and ACI 318-99, and the columns of in the first story were constructed. The columns were classified into interior and columns. For each interior and exterior columns, upper and lower parts ate modeled by the 2/3 scale experimental specimens. The specimens for lower part columns have lap splice. The interior columns were tested under the constant axial force, while the exterior columns were tested under the fluctuating axial force. Based on the results of the experiments, the effects of the lap splice and axial force on the column performance are evaluated.

  • PDF

Analytic Investigation on Inelastic Behavior of Reinforced Concrete Frame with Seismic Detail (내진 상세 철근콘크리트 골조의 비탄성 거동에 관한 해석적 연구)

  • 박철용;이한선;김상대
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.466-472
    • /
    • 1996
  • The nonlinear analysis was perforned for a 2-bay 2-story moment-resisting reinforced concrete plane frame with seismic detail using KDARC 2D program. The analytical models consist of the material model, the member model, the hysteretic model, and the damage model etc. The conclusion based on the results of analysis is as following. : (1) Story shear-displacement relationship is similar to the experiment result but from the energy point of view, the analysis relationship is similar to the experiment result but from the energy point of view, the analysis result was different from the experiment result. (2) Plastic hinges were found to occur mainly in beams at first story while all the columns had plastic hinges throughout the structure. (3) Failure mode is a little different from experiment result in the yielding mechanism. (4) Damage index isabout 0.25. This means that the degree of damage is moderate and can be repairable.

  • PDF