• 제목/요약/키워드: Reinforced and unreinforced slope

검색결과 13건 처리시간 0.025초

보강제체사면의 침투거동평가 (Evaluation of The Seepage Behavior for Reinforced Embankment)

  • 신방웅;안병철
    • 한국안전학회지
    • /
    • 제15권1호
    • /
    • pp.146-152
    • /
    • 2000
  • To estimate the behavior of reinforced and unreinforced embankment constructed on a impermeable foundation ground, a laboratory model test was performed for two types of soils and water level increasing velocity of a flood period. The experiment models were constructed with slopes of water level is 1.25cm/min, 2.5cm/min each. From model test results, as the slope of reinforced and unreinforced embankment was the slower, the more seepage line rised. In the unreinforced embankment, the rising velocity of water level was the faster, the larger the embankment failure was. And the reinforced embankment with geotextile was the more safe than the unreinforced embankment for seepage force.

  • PDF

Probabilistic bearing capacity of strip footing on reinforced anisotropic soil slope

  • Halder, Koushik;Chakraborty, Debarghya
    • Geomechanics and Engineering
    • /
    • 제23권1호
    • /
    • pp.15-30
    • /
    • 2020
  • The probabilistic bearing capacity of a strip footing placed on the edge of a purely cohesive reinforced soil slope is computed by combining lower bound finite element limit analysis technique with random field method and Monte Carlo simulation technique. To simulate actual field condition, anisotropic random field model of undrained soil shear strength is generated by using the Cholesky-Decomposition method. With the inclusion of a single layer of reinforcement, dimensionless bearing capacity factor, N always increases in both deterministic and probabilistic analysis. As the coefficient of variation of the undrained soil shear strength increases, the mean N value in both unreinforced and reinforced slopes reduces for particular values of correlation length in horizontal and vertical directions. For smaller correlation lengths, the mean N value of unreinforced and reinforced slopes is always lower than the deterministic solutions. However, with the increment in the correlation lengths, this difference reduces and at a higher correlation length, both the deterministic and probabilistic mean values become almost equal. Providing reinforcement under footing subjected to eccentric load is found to be an efficient solution. However, both the deterministic and probabilistic bearing capacity for unreinforced and reinforced slopes reduces with the consideration of loading eccentricity.

Geotextile로 보강된 제체의 거동 (Behavior of a Geotextile Reinforced Embankment)

  • 신방웅;배우석;이종규;안병철
    • 한국지반환경공학회 논문집
    • /
    • 제2권2호
    • /
    • pp.51-58
    • /
    • 2001
  • 본 연구에서는 보강제체와 무보강제체의 침투거동을 평가하기 위하여 실내모형실험을 실시하였다. 제체침투시험은 사면경사가 1:1.5, 1:2.0이고 수위상승속도가 1.25cm/min, 2.5cm/min, 수위는 15cm, 25cm, 35cm인 조건에서 실시하였다. 모형실험결과 보강재를 사용한 제체의 경우 지하수의 흐름과 상승 때문에 어느 정도의 침하와 수평방향변위가 발생하였으나, 무보강제체에서 나타난 커다란 활동파괴는 발생되지 않았다. 그리고 수위상승속도 변화에 따른 제체의 침투거동분석결과 Geotextile로 보강된 제체가 무보강제체보다 최종침하량이 감소하는 것으로 나타나 Geotextile을 설치한 제체가 비교적 물의 침투력에 대해 안정한 것으로 나타났다.

  • PDF

사면보수보강을 위한 FPF 보강공법개발 (FPF(Fibrillated Polypropylene Fiber) Reinforcement Method for Slope Repair)

  • 김낙경;박동원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.257-264
    • /
    • 2001
  • This study presents the slope stability analysis results for the model slope test. The model slope was made of the soil reinforced by FPF(Fibrillated Polyprophylene Fiber). The shear strength properties of the soil reinforced by FPF fibers were evaluated through the direct shear tests. The model slope 1:1 and 1:1.5 were made and the load tests were performed. Back analysis using limit equilibrium method was carried out to evaluate the shear strength increase on the FPF reinforced slope. The factor of safety of the FPF reinforce slope increased about 23% over unreinforced slope.

  • PDF

The behaviour of a strip footing resting on geosynthetics-reinforced slopes

  • Hamed Yazdani;Mehdi Ashtiani
    • Geomechanics and Engineering
    • /
    • 제34권6호
    • /
    • pp.623-636
    • /
    • 2023
  • This study utilized small-scale physical model tests to investigate the impact of different types of geosynthetics, including geocell, planar geotextile, and wraparound geotextile, on the behaviour of strip footings placed on 0.8 m thick soil fills and backfills with a slope angle of 70°. Bearing capacity and settlement of the footing and failure mechanisms are discussed and evaluated. The results revealed that the bearing capacity of footings situated on both unreinforced and reinforced slopes increased with a greater embedment depth of the footing. For settlement ratios below 4%, the geocell reinforcement exhibited significantly higher stiffness, carrying greater loads and experiencing less settlement compared to the planar and wraparound geotextile reinforcements. However, the performance of geocell reinforcement was influenced by the number and length of the geocell layers. Increasing the geocell back length ratio from 0.44 to 0.84 significantly improved the bearing capacity of the footing located at the crest of the reinforced slope. Adequate reinforcement length, particularly for geocell, enhanced the bearing pressure of the footing and increased the stiffness of the slope, resulting in reduced deflections. Increasing the length of reinforcement also led to improved performance of the footing located on wraparound geotextile reinforced slopes. In all reinforcement cases, reducing the vertical spacing between reinforcement layers from 100 mm to 75 mm allowed the slope to withstand much greater loads.

토목섬유 보강 성토사면의 안정해석 I. - 보강효과를 고려한 사면안정해석 - (A Stability Analysis of Geosynthetics Reinforced Soil Slopes I. - Slope Stability Analysis Considering Reinforcing Effects -)

  • 김경모;김홍택;이은수;김영윤;안광국
    • 한국지반공학회논문집
    • /
    • 제21권8호
    • /
    • pp.95-105
    • /
    • 2005
  • 토목섬유로 보강된 성토사면에 대한 사면안정해석은 보강재의 효과를 고려하여 수정된 한계평형해석법을 사용하는 것이 일반적이나, 대부분의 경우 보강재에 의하여 활동면상에 증가된 전단저항력만을 고려함으로써 전체 활동토체의 평형조건의 만족여부는 확실치 않다. 일반적으로 사면안정해석은 활동면상의 법선응력의 분포를 구하는 것으로 귀결 되므로, 본 연구에서는 활동면상에 작용하는 법선응력의 분포를 수평방향의 거리 $\chi$에 대한 2차함수로 가정하여 보강재의 효과를 고려하면서 힘과 모멘트의 평형조건을 모두 만족하는 새로운 사면안정해석법을 제안하였다. 제안된 사면 안정해석법은 잘 알려진 보강 및 무보강 사면에 대한 사면안정해석 사례와 보강토 옹벽 및 보강사면에 대한 모형실험 결과에 대한 해석을 통하여 그 타당성을 검토하였다. 그 결과 본 연구에서 제안한 방법은 보강 및 무보강사면에 대하여 타당한 사면활동에 대한 안전율을 제공해주는 것으로 나타났다.

수치해석을 통한 상향식 배수겸용 쏘일네일링에 대한 강우모형사면 거동 연구 (Numerical Analysis on the Behavior of a Slope with Upward Drainable Soil Nails during Rainfall)

  • 김영남;이철규;이강일
    • 한국지반신소재학회논문집
    • /
    • 제13권1호
    • /
    • pp.11-22
    • /
    • 2014
  • 본 연구는 보강과 동시에 수평배수를 겸용하는 상향식 쏘일네일에 대한 지반거동을 파악하기 위해서 모형실험과 수치해석을 이용하여 그 거동을 연구하였다. 모형실험은 모형토조 내에 상대밀도 및 강우강도 조건별로 풍화토 지반의 모형사면을 만들고 그 위에 인공강우를 뿌리는 실험을 통해 쏘일네일을 설치하지 않는 무보강조건과 배수기능을 겸한 상향식 쏘일네일을 설치하는 보강조건으로 나누어 실험을 실시하였다. 또한 실험결과를 검증하기 위하여 침투해석 프로그램인 SEEP/W를 사용하여 모형실험이 시행된 조건으로 침투해석을 실시하고 그 결과를 비교분석하였다. 본 연구 결과 강우로 인한 지하수위와 간극수압의 변화는 수치해석의 경우는 지체시간이 없이 변화되는데 비하여 모형실험은 지체시간이 있는 상태로 나타났지만 전반적으로 최종 도달시점의 측정값은 유사하게 나타나 수치해석으로 모형지반을 모사할 수 있었다.

A laboratory and numerical study on the effect of geogrid-box method on bearing capacity of rock-soil slopes

  • Moradi, Gholam;Abdolmaleki, Arvin;Soltani, Parham;Ahmadvand, Masoud
    • Geomechanics and Engineering
    • /
    • 제14권4호
    • /
    • pp.345-354
    • /
    • 2018
  • Currently, layered geogrid method (LGM) is the commonly practiced technique for reinforcement of slopes. In this paper the geogrid-box method (GBM) is introduced as a new approach for reinforcement of rock-soil slopes. To achieve the objectives of this study, a laboratory setup was designed and the slopes without reinforcements and reinforced with LGM and GBM were tested under the loading of a circular footing. The effect of vertical spacing between geogrid layers and box thickness on normalized bearing capacity and failure mechanism of slopes was investigated. A series of 3D finite element analysis were also performed using ABAQUS software to supplement the results of the model tests. The results indicated that the load-settlement behavior and the ultimate bearing capacity of footing can be significantly improved by the inclusion of reinforcing geogrid in the soil. It was found that for the slopes reinforced with GBM, the displacement contours are widely distributed in the rock-soil mass underneath the footing in greater width and depth than that in the reinforced slope with LGM, which in turn results in higher bearing capacity. It was also established that by reducing the thickness of geogrid-boxes, the distribution and depth of displacement contours increases and a longer failure surface is developed, which suggests the enhanced bearing capacity of the slope. Based on the studied designs, the ultimate bearing capacity of the GBM-reinforced slope was found to be 11.16% higher than that of the slope reinforced with LGM. The results also indicated that, reinforcement of rock-soil slopes using GBM causes an improvement in the ultimate bearing capacity as high as 24.8 times more than that of the unreinforced slope.

복합보강재를 이용한 보강점성토의 거동 (Behavior of Geosynthetic-Reinforced Clay)

  • 노한성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 토목섬유 특별세미나
    • /
    • pp.73-78
    • /
    • 2000
  • The reinforced soil has been widely used for constructing retaining walls and embankment with steep slope. However, the benefits of soil reinforcing are often-restricted by a lack of good quality backfill material. In this study, plane strain compression tests were carried out to study the effects of preloading on the behavior of geosynthetic-reinforced saturated clay. For the unreinforced and reinforced soil, drained and undrained shearing tests were peformed after anisotropic consolidation in a constant strain rate. A preoading test was carried out by preloading, creep, unloading, aging and undrained shearing after anisotropic consolidation(K=0.3, σ'₃=50 kPa). It was observed that a reinforced clay, Kanto loam, can have a great initial secant modulus in undraind condition by well compaction and over consolidation. The results shown that the increasing of drained strength should be used to apply a large preloading in the case of reinforced clay.

  • PDF

Small- and large-scale analysis of bearing capacity and load-settlement behavior of rock-soil slopes reinforced with geogrid-box method

  • Moradi, Gholam;Abdolmaleki, Arvin;Soltani, Parham
    • Geomechanics and Engineering
    • /
    • 제18권3호
    • /
    • pp.315-328
    • /
    • 2019
  • This paper presents an investigation on bearing capacity, load-settlement behavior and safety factor of rock-soil slopes reinforced using geogrid-box method (GBM). To this end, small-scale laboratory studies were carried out to study the load-settlement response of a circular footing resting on unreinforced and reinforced rock-soil slopes. Several parameters including unit weight of rock-soil materials (loose- and dense-packing modes), slope height, location of footing relative to the slope crest, and geogrid tensile strength were studied. A series of finite element analysis were conducted using ABAQUS software to predict the bearing capacity behavior of slopes. Limit equilibrium and finite element analysis were also performed using commercially available software SLIDE and ABAQUS, respectively to calculate the safety factor. It was found that stabilization of rock-soil slopes using GBM significantly improves the bearing capacity and settlement behavior of slopes. It was established that, the displacement contours in the dense-packing mode distribute in a broader and deeper area as compared with the loose-packing mode, which results in higher ultimate bearing load. Moreover, it was found that in the loose-packing mode an increase in the vertical pressure load is accompanied with an increase in the soil settlement, while in the dense-packing mode the load-settlement curves show a pronounced peak. Comparison of bearing capacity ratios for the dense- and loose-packing modes demonstrated that the maximum benefit of GBM is achieved for rock-soil slopes in loose-packing mode. It was also found that by increasing the slope height, both the initial stiffness and the bearing load decreases. The results indicated a significant increase in the ultimate bearing load as the distance of the footing to the slope crest increases. For all the cases, a good agreement between the laboratory and numerical results was observed.