• 제목/요약/키워드: Reinforced Roadbed

검색결과 74건 처리시간 0.045초

동적하중 재하시 강화노반 재료별 침하 특성 (Characteristics of Displacement of the Reinforced Roadbed Materials with Cyclic Loading)

  • 황선근;이성혁;최찬용
    • 한국철도학회논문집
    • /
    • 제5권2호
    • /
    • pp.70-76
    • /
    • 2002
  • In this study, performance of reinforced railroad roadbeds with the reinforced roadbed materials were investigated through the real scale roadbed tests. It was also found that the reinforced roadbed with reinforced roadbed materials has less elastic and plastic settlement than the one with soil. The slag roadbed was more effective than the crushed stone roadbed with the same condition for load distribution. Therefore considering overall characteristics of reinforced roadbed material, the optimum thickness was recommended as 50 cm. Furthermore the real scale model test under the simulated rainfall condition, the settlement in the slag roadbed was about 8 times smaller than the settlement in the soil roadbed.

고속전철 강화노반의 침하예측에 관한 연구 (A Study on the Settlement Prediction of Reinforced Roadbeds)

  • 황선근;신민호;이일화;조용권
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.346-353
    • /
    • 2000
  • The benefit of reinforced roadbeds, such as roadbed reinforced with slag and roadbed with crushed stone has been known among engineers. In this study, model soil box test is executed to determine optimum roadbed thickness. As a result, a empirical solution for the settlement of reinforced roadbeds was suggested. Furthermore, optimum thickness of reinforced roadbed could be determined based on the settlement characteristic of reinforced roadbed among the several variables.

  • PDF

현장부설시험을 통한 철도 강화노반공법의 적용성에 관한 연구 (A Study on the Applicability of the Reinforced Railroad Roadbed Method by Field Test)

  • 황선근;신민호;이성혁;최찬용;이시한
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.215-222
    • /
    • 2000
  • The reinforced roadbed should have the ability to spread out the load intensity lower than the bearing capacity of the subgrade of track structure as well as to prevent the softening of roadbed by providing appropriate stiffness in the roadbed, thus fully supports the track structures. Full scale reinforced roadbeds with several different types of monotoring sensors was also constructed to evaluate the performance of each reinforced roadbed through the continuous monitoring while the train operation. In this study, Field tests such as PLT, SASW were also carried out at each reinforced roadbed. The results of the field and lab tests, installation and calibration of sensors, as well as construction condition of the reinforced roadbed are presented.

  • PDF

동적하중 재하시 쇄석강화노반의 거동 특성 (Characteristics of Behavior of the Crushed Stone Reinforced Roadbed under Cyclic Loading)

  • 황선근;이성혁;이일화;최찬용
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.525-532
    • /
    • 2001
  • In this study, performance of reinforced railroad roadbeds with the crushed stones was investigated through the real scale railroad roadbed tests. Several real scale reinforced railroad roadbeds were constructed in the laboratory with different subgrade conditions and were tested with the estimated actual train loads including the impact loading of train. The affecting factors such as settlement, earth pressure and stress change at the surface of reinforced roadbed, subgrade layers as well as surface of rails were measured. It was found through the actual testing that for the roadbed with the same thickness, the settlement and vibration level (velocity) of reinforced roadbed decreases with the increase of reaction modulus of subgrade. The settlement of reinforced roadbed with the same reaction modulus of subgrade also decreases with the increase of thickness of the reinforced roadbed.

  • PDF

모사 열차하중 재하에 따른 쇄석강화노반의 침하특성 (Settlement Characteristics of the Reinforced Railroad Roadbed with Crushed Stones Under a Simulated Train Loading)

  • Hwang, Seon-Keun
    • 한국지반공학회논문집
    • /
    • 제20권2호
    • /
    • pp.5-13
    • /
    • 2004
  • 기존의 흙을 사용하여 건설된 철도 노반은 반복적인 교통하중의 증가, 열차속도의 향상, 노반상으로의 지하수의 유입, 노반의 배수능력 저하 등의 이유로 인해 시간경과에 따라 쉽게 그 기능을 상실할 수 있다. 본 연구에서는 실대형시험과 수치해석을 수행함으로씨 철도노반으로서의 쇄석강화노반의 성능을 평가하였다. 쇄석강화노반의 탄$.$소성 연직변위는 모사열차하중의 재하횟수에 관계없이 일반 흙노반에 비해 작은 응답특성을 보였으며, 동일한 노반 부설두께에서는 노반반력계수의 증가에 따라 감소하며, 동일한 강성인 경우 노반 부설두께 증가에 따라 감소하는 경향을 보였다. 하지만, 쇄석강화노반의 부설두께에 비해 노반의 강성이 궤도에 발생하는 전체 소성 연직변위에 더욱 큰 영향을 미치는 것으로 평가되었다.

Settlement Reduction Effect of Advanced Back-to-Back Reinforced Retaining Wall

  • Koh, Taehoon;Hwang, Seonkeun;Jung, Hunchul;Jung, Hyuksang
    • International Journal of Railway
    • /
    • 제6권3호
    • /
    • pp.107-111
    • /
    • 2013
  • In order to constrain the railway roadbed settlement which causes track irregularity, and thus threats running stability and ride quality, advanced Back-to-Back (BTB) reinforced retaining wall was numerically analyzed as railway roadbed structure. This study is intended to improve conventional Back-to-Back reinforced retaining wall as the technology which would reduce the roadbed settlement in a way of constraining the lateral displacement of its prestressed vertical facing and inducing arching effects in roadbed (backfill) placed between masonry diaphragm wall and vertical facing. As a result of numerical analysis, it was found that the roadbed settlement was reduced by 10% due to the prestressed vertical facing and embedded masonry diaphragm wall of the advanced Back-to-Back reinforced retaining wall system.

수재슬래그를 이용한 강화노반재료의 기초적 특성 연구 (A Study on Basic Properties of the Reinforced-roadbed Material Using Water Quenched Blast Furnace Slag)

  • 이선복;윤지선
    • 한국지반공학회논문집
    • /
    • 제19권1호
    • /
    • pp.103-110
    • /
    • 2003
  • 고속 및 하중이 큰 열차의 운행으로 인한 동적하중과 진동으로 인해 발생하는 노반의 파괴를 억제하기 위해 기존의 노반을 대체할 보강 재료의 개발이 필수적이라 할 수 있다. 잠재수경성을 가지고 있는 수재슬래그는 이러한 특성을 대신 할 수 있는 재료중의 하나이다. 본 연구에서는 일반적으로 사용되는 포틀랜드시멘트와 CSA(calcium sulphoaluminate)를 자극재로 사용하는 수재슬래그 강화노반재에 대한 기초특성에 관한 연구를 수행하였다. 강도시험결과 이 재료는 강화노반에 대한 설계기준을 만족시켰다. 본 강화노반재료의 최적의 혼합비율은 수재슬래그양에 대하여 시멘트 첨가량 15 ~ 17.5%, 팽창재(CSA) 첨가량 2,5%로 나타났으며, 특히 투수계수가 $10^{-3}$cm/sec 이상이므로 본 재료는 강화노반의 성능과 동시에 배수층의 성능을 가지고 있음을 확인하였다.

콘크리트 슬래브 궤도 흙쌓기 구간의 강화노반 두께에 관한 연구 (A Research on the Reinforced Roadbed Thickness of Concrete Slab Track on Embankment Section)

  • 신승진;신민호;박종관;이일화
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.1242-1247
    • /
    • 2007
  • An active application of concrete track is being expected for the future constructions of Korea railroad. For the successful construction and design in embankment section, the roadbed behavior should be reasonably estimated using the proper analysis method. In this research, behaviors of reinforced roadbed constructed with the determined stiffness and thickness at embankment section were estimated through various design parameters and numerical analysis. A three dimensional finite element method was employed to determine the proper reinforced roadbed thickness at embankment section. The displacement and vertical stress caused by train loading were estimated and compared with the field test results. The bearing characteristics of concrete track roadbed were presented. Moreover, the method to determine thickness of reinforced roadbed was proposed.

  • PDF

일반철도 강화노반 두께의 고속철도 적용 가능성 연구 (Examine the Applicability of the Thickness of Conventional Railroad Reinforced Roadbed at High-speed Railroad)

  • 이진욱;이성혁;사공명
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.3166-3171
    • /
    • 2011
  • The design standard for the thickness of reinforced roadbed is divided into high-speed and conventional railroad because dynamic characteristics of train loadings differ depending on the train speed. Due to the national plan for increasing the train speed for both conventional and new railroad lines, it is necessary to examine the applicability of concrete tracks and feasibility of the train speed increase on the conventional lines with the current thickness of the reinforced roadbed. In this study, a real-scale test was performed to monitor the dynamic characteristics of the reinforced roadbed with a thickness of 20cm and the train speed of 200km/h, 300km/h, and 400km/h. The test results were then compared with the design code to investigate the applicability of the conventional reinforced roadbed when the trains operate with higher speed.

  • PDF

노반재료의 소성침하 예측식을 이용한 강화노반 두께 산정 (Estimation of Reinforced Roadbed Thickness based on Experimental Equation)

  • 신은철;양희생;최찬용
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1747-1755
    • /
    • 2008
  • Design of the reinforced roadbed thickness is concerned with safe operation of trains at specified levels of speed, axle load and tonnage. There are two methods for evaluating it. One is using an experimental equation and the other is using elastic theory with considering axle load, material properties of subsoils and allowable elastic settlement. Multi-layered theory is used to determine reinforced roadbed thickness by RTRI. Although their reinforced roadbed thickness is designed with an objective of achieving a minimum standard 2.5mm of settlement on the subgrade surface, it is hardly applied to real design. Li(1994) has suggested the experimental model which design approach is to limit plastic strain and deformations for the design period. It is worth due to adopting soil equivalent number of repeated load application. Moreover, it has been a more advanced method than existing design methods because including resilient modulus of subsoil beneath track, soil deviator stress caused by train axle loads and MGT. In this paper, it is analyzed under domestic track conditions to estimate the reinforced roadbed thickness with different soil types.

  • PDF