• Title/Summary/Keyword: Reinforced Concrete Frame

Search Result 651, Processing Time 0.029 seconds

Correlation of Experimental and Analytical Seismic Responses of a 1:5 Scale 3-Story Reinforced Concrete Frame

  • Lee, Han-Seon;Woo, Sung-Woo
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.3-16
    • /
    • 2000
  • A series of dynamic and static tests were conducted to observe the actual responses of a 1:5 scale 3-story reinforced concrete(RC) frame which was designed only for gravity loads. One of the major objectives of these experiments is to provide the calibration to the available static and dynamic inelastic analysis techniques. In this study, the experimental results were simulated by using a nonlinear analysis program for reinforced concrete frame, IDARC-2D. The evaluation of the degree of the simulation leads to the conclusion that while the global behaviors such as story drifts and shears can be in general simulated with the limited accuracy in the dynamic nonlinear analysis, it is rather easy and simple to get the fairly high level of accuracy in the prediction of global and local behaviors in the static nonlinear analysis by using IDARC-2D.

  • PDF

Seismic Behavior of Non Ductile Reinforced Concrete Frame Retrofitted With Cast-In Place Infilled Shear Wall (현장타설 끼움 벽으로 보강된 비내진 상세를 갖는 철근콘크리트 골조의 내진거동)

  • Lee, Hye-Yeon;Kim, Sun-Woo;Han, Byung-Chan;Yun, Hyun-Do;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.453-456
    • /
    • 2004
  • RC frames built prior to the advent of the philosophy of ductile concrete is one type of existing construction susceptible to damage. Strengthening and stiffening of such frames has been accomplished by infilled frames with cast-in-place, reinforced concrete walls. Placement of CIP shear walls within strategic bays of a structure appears to be a logical and economical method to strengthen a reinforced concrete frame and to stiffen a building in order to reduce architectural and mechanical damage. This study investigates the seismic performance of cast-in place infilled shear wall within existing frames. The object of this study is to clarify the seismic capacity and characteristics in the hysteretic behavior of bare frame, CIP infilled shear wall and CIP infilled wall reinforced diagonal bars.

  • PDF

Seismic Capacity of Reinforced Concrete Frames Retrofitted with H-beam Frame (H형강 프레임으로 보강한 철근 콘크리트 골조의 내진성능 평가)

  • Kim, Min Sook;Choi, Hosoon;Song, Seung Eon;Lee, Young Hak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.127-132
    • /
    • 2013
  • This study proposed proposes a retrofitting method using an H-beam frame to improve the seismic performance of non-seismic designed reinforced concrete frames. To evaluate the seismic performance with the H-beam frames, a cyclic lateral load test was performed and the experimental result was compared with the bared frame, and a masonry infilled RC frame. The results was were analyzed regarding aspects of the load-displacement hysteresis behavior, effective stiffness, displacement ductility, and cumulative energy dissipation. AlsoIn addition, it was possible to prove both an increase of in the maximum load capacity, effective stiffness, and energy dissipation capacity using the H-beam frame.

Effect of introducing RC infill on seismic performance of damaged RC frames

  • Turk, Ahmet Murat;Ersoy, Ugur;Ozcebe, Guney
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.469-486
    • /
    • 2006
  • The main objective of this study was to investigate the seismic behavior of damaged reinforced concrete frames rehabilitated by introducing cast in place reinforced concrete infills. Four bare and five infilled frames were constructed and tested. Each specimen consisted of two (twin) 1/3-scale, one-bay and two-story reinforced concrete frames. Test specimens were tested under reversed-cyclic lateral loading until considerable damage occurred. RC infills were then introduced to the damaged specimens. One bare specimen was infilled without being subjected to any damage. All infilled frames were then tested under reversed-cyclic lateral loading until failure. While some of the test frames were detailed properly according to the current Turkish seismic code, others were built with the common deficiencies observed in existing residential buildings. The variables investigated were the effects of the damage level and deficiencies in the bare frame on the seismic behavior of the infilled frame. The deficiencies in the frame were; low concrete strength, inadequate confinement at member ends, 90 degree hooks in column and beam ties and inadequate length of lapped splices in column longitudinal bars made above the floor levels. Test results revealed that both the lateral strength and lateral stiffness increased significantly with the introduction of reinforced concrete infills even when the frame had the deficiencies mentioned above. The deficiency which affected the behavior of infilled frames most adversely was the presence of lap splices in column longitudinal reinforcement.

Non-linear Finite Element Analysis and Performance Evaluations of Frames Strengthened by Non-uniform Concrete Brace Facade (비정형 콘크리트 가새 파사드 보강 골조의 비선형 유한요소 해석 및 성능평가)

  • Lee, Sun-Ju;Kim, Hyo-Ju;Cho, Chang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.73-80
    • /
    • 2024
  • Non-uniform reinforced concrete brace facade systems are newly considered to improve seismic performance of reinforced concrete frame buildings under lateral load. For normal and high strength concrete of 30MPa, 80MPa, and 120MPa, the cross-sections of reinforced concrete brace facade systems were designed as different size with same amount of reinforcements. The strengthened frame systems were analyzed by a non-linear two-dimensional finite element technique which was considering material non-linearities of concrete and reinforcing bars under monotonic and cyclic loadings. From the study of non-linear analysis of the systems, therefore, it was provided that the proposed braced facade systems were reliable to improve laterally load-carrying capacity and minimize damages of concrete members through comparisons of load-displacement curves, crack patterns, and stress distributions of reinforcing bars predicted by current non-linear finite element analysis of frame specimens.

Numerical analysis on the behaviour of reinforced concrete frame structures in fire

  • Dzolev, Igor M.;Cvetkovska, Meri J.;Ladinovic, Dorde Z.;Radonjanin, Vlastimir S.
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.637-647
    • /
    • 2018
  • Numerical approach using finite element method has been used to evaluate the behaviour of reinforced concrete frame structure subjected to fire. The structure is previously designed in accordance with Eurocode standards for the design of structures for earthquake resistance, for the ductility class M. Thermal and structural response are obtained using a commercially available software ANSYS. Temperature-dependent nonlinear thermal and mechanical properties are adopted according to Eurocode standards, with the application of constitutive model for the triaxial behaviour of concrete with a smeared crack approach. Discrete modelling of concrete and reinforcement has enabled monitoring of the behaviour at a global, as well as at a local level, providing information on the level of damage occurring during fire. Critical regions in frame structures are identified and assessed, based on temperatures, displacements, variations of internal forces magnitudes and achieved plastic deformations of main reinforcement bars. Parametric analyses are conducted for different fire scenarios and different types of concrete aggregate to determine their effect on global deformations of frame structures. According to analyses results, the three-dimensional finite element model can be used to evaluate the insulation and mechanical resistance criteria of reinforced concrete frame structures subjected to nominal fire curves.

Experimental Study of Infilled Wall in Reinforced Concrete Structure (메움벽에 의한 R/C 골조의 내진성능 평가에 관한 연구)

  • 김석균;김정한;김영문
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.403-406
    • /
    • 1999
  • Although infilled wall considered as a non-structural element, the infilled applied in reinforced concrete frame structural systems represents an important element influencing the behaviour and the stability of a structure under seismic effect. This research is performed an experimental investigation of gravity-load designed single-stroy, single-bay, low-rise nonseismic moment-resisting reinforced concrete frame 2 dimension specimens to evaluate the effect of seismic capacity. For pseudo static test, it was manufactured one half scale specimens of two types (Bare Frame, Infilled Frame) based on typical building. The results of these experiments provided regarding the global as well as the local responses of 1) Crack pattern and failure modes, 2) Stiffness, strength.

  • PDF

Lateral Load Tests of A 10-Story Reinforced Concrete Frame with Nonseismic Details (비내진 상세를 가진 10층 철근 콘크리트 골조의 횡방향 가력 실험)

  • 이한선;강귀용;김정우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.525-530
    • /
    • 1998
  • The objective of this experiment is to observe the elastic and inelastic behaviors of high-rise reinforced concrete frames with nonseimic details. To do this, a building frame designed according to Korean seismic code and detailed in the Korean conventional manner was selected. An 1:12 scale plane frame model was manufactured according law. Reversed lateral load tests and monotonic push-over test were performed under the displacement control. To simulate the earthquake effect, the lateral force distribution was maintained to be an inversed triangular by using whiffle tree. From the tests, story displacements, lateral story forces, local plastic rotations and the relations between inter-story drift versus story shear are obtained. Based on the test results, conclusions on the characteristics of the elastic and behaviors of a high-rise reinforced concrete frame with nonseismic details are drawn.

  • PDF

Inelastic Behavior and Ductility Capacity of Reinforced Concrete Frame Subjected In Cyclic Lateral Load (반복 휭하중을 받는 철근콘크리트 골조의 비탄성 거동 및 연성능력)

  • 김태훈;김운학;신현목
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.467-473
    • /
    • 2002
  • The purpose of this study is to investigate the inelastic behavior and ductility capacity of reinforced concrete frame subjected to cyclic lateral load and to provide result for developing improved seismic design criteria. A computer program named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology) for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. The strength increase of concrete due to the lateral confining reinforcement has been taken into account to model the confined concrete. In boundary plane at which each member with different thickness is connected local discontinuous deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel. The proposed numerical method for the inelastic behavior and ductility capacity of reinforced concrete frame subjected to cyclic lateral load is verified by comparison with reliable experimental results.

Development of Now Technique for Earthquake-Resistant Retrofit in Reinforced Concrete Frame (철근콘크리트 골조의 내진보강을 위한 신기술 개발)

  • 하기주;신종학;최민권;조용태;조용태;이상목;이영범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.69-74
    • /
    • 2000
  • In this dissertation, experimental research was carried out to study the hysteretic behavior of reinforced concrete frame designed by high performance techniques, using carbon fiber plate, diagonal bracing system with or without steel frame. Experimental programs were carried to evaluate the structural performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Specimens(RFCP, RFXB, RFXB-F), designed by the improvement of earthquake-resistant performance, were attained more load-carrying load-carrying capacity stable hysteretic behavior.

  • PDF