• Title/Summary/Keyword: Regularization Parameter

Search Result 93, Processing Time 0.025 seconds

Inverse Problem Methodology for Parameter Identification of a Separately Excited DC Motor

  • Hadef, Mounir;Mekideche, Mohamed Rachid
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.365-369
    • /
    • 2009
  • Identification is considered to be among the main applications of inverse theory and its objective for a given physical system is to use data which is easily observable, to infer some of the geometric parameters which are not directly observable. In this paper, a parameter identification method using inverse problem methodology is proposed. The minimisation of the objective function with respect to the desired vector of design parameters is the most important procedure in solving the inverse problem. The conjugate gradient method is used to determine the unknown parameters, and Tikhonov's regularization method is then used to replace the original ill-posed problem with a well-posed problem. The simulation and experimental results are presented and compared.

A MIXED NORM RESTORATION FOR MULTICHANNEL IMAGES

  • Hong, Min-Cheol;Cha, Hyung-Tae;Hahn, Hyun-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.399-402
    • /
    • 2000
  • In this paper, we present a regularized mixed norm multichannel image restoration algorithm. The problem of multichannel restoration using both within- and between- channel deterministic information is considered. For each channel a functional which combines the least mean squares (LMS), the least mean fourth(LMF), and a smoothing functional is proposed, We introduce a mixed norm parameter that controls the relative contribution between the LMS and the LMF, and a regularization parameter that defines the degree of smoothness of the solution, both updated at each iteration according to the noise characteristics of each channel. The novelty of the proposed algorithm is that no knowledge of the noise distribution for each channel is required, and the parameters mentioned above are adjusted based on the partially restored image.

  • PDF

Research on prediction and analysis of supercritical water heat transfer coefficient based on support vector machine

  • Ma Dongliang;Li Yi;Zhou Tao;Huang Yanping
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4102-4111
    • /
    • 2023
  • In order to better perform thermal hydraulic calculation and analysis of supercritical water reactor, based on the experimental data of supercritical water, the model training and predictive analysis of the heat transfer coefficient of supercritical water were carried out by using the support vector machine (SVM) algorithm. The changes in the prediction accuracy of the supercritical water heat transfer coefficient are analyzed by the changes of the regularization penalty parameter C, the slack variable epsilon and the Gaussian kernel function parameter gamma. The predicted value of the SVM model obtained after parameter optimization and the actual experimental test data are analyzed for data verification. The research results show that: the normalization of the data has a great influence on the prediction results. The slack variable has a relatively small influence on the accuracy change range of the predicted heat transfer coefficient. The change of gamma has the greatest impact on the accuracy of the heat transfer coefficient. Compared with the calculation results of traditional empirical formula methods, the trained algorithm model using SVM has smaller average error and standard deviations. Using the SVM trained algorithm model, the heat transfer coefficient of supercritical water can be effectively predicted and analyzed.

An Optimization Method of Neural Networks using Adaptive Regulraization, Pruning, and BIC (적응적 정규화, 프루닝 및 BIC를 이용한 신경망 최적화 방법)

  • 이현진;박혜영
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.1
    • /
    • pp.136-147
    • /
    • 2003
  • To achieve an optimal performance for a given problem, we need an integrative process of the parameter optimization via learning and the structure optimization via model selection. In this paper, we propose an efficient optimization method for improving generalization performance by considering the property of each sub-method and by combining them with common theoretical properties. First, weight parameters are optimized by natural gradient teaming with adaptive regularization, which uses a diverse error function. Second, the network structure is optimized by eliminating unnecessary parameters with natural pruning. Through iterating these processes, candidate models are constructed and evaluated based on the Bayesian Information Criterion so that an optimal one is finally selected. Through computational experiments on benchmark problems, we confirm the weight parameter and structure optimization performance of the proposed method.

  • PDF

Adaptive lasso in sparse vector autoregressive models (Adaptive lasso를 이용한 희박벡터자기회귀모형에서의 변수 선택)

  • Lee, Sl Gi;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.27-39
    • /
    • 2016
  • This paper considers variable selection in the sparse vector autoregressive (sVAR) model where sparsity comes from setting small coefficients to exact zeros. In the estimation perspective, Davis et al. (2015) showed that the lasso type of regularization method is successful because it provides a simultaneous variable selection and parameter estimation even for time series data. However, their simulations study reports that the regular lasso overestimates the number of non-zero coefficients, hence its finite sample performance needs improvements. In this article, we show that the adaptive lasso significantly improves the performance where the adaptive lasso finds the sparsity patterns superior to the regular lasso. Some tuning parameter selections in the adaptive lasso are also discussed from the simulations study.

A Regularized Mixed Norm Multi-Channel Image Restoration Algorithm (정규화 혼합 Norm을 이용한 다중 채널 영상 복원 방식)

  • 홍민철;신요안;이원철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.272-282
    • /
    • 2004
  • This paper introduces a regularized mixed norm multi-channel image restoration algorithm using both within-and between- channel deterministic information. For each channel a functional which combines the least mean squares (LMS), the least mean fourth (LMF), and a smoothing functional is proposed. We introduce a mixed norm parameter that controls the relative contribution between the LMS and the LMF, and a regularization parameter defining the degree of smoothness of the solution, where both parameters are updated at each iteration according to the noise characteristics of each channel. The novelty of the proposed algorithm is that no knowledge of the noise distribution for each channel is required and that the parameters mentioned above are adjusted based on the partially restored image.

Shape from Shading using the Hierarchical basis Function and Multiresolution Images (계층적 기저함수와 다해상도 영상을 이용한 영사응로부터 물체의 형상복구)

  • 이승배;이상욱;최종수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.11
    • /
    • pp.73-84
    • /
    • 1992
  • In this paper, an algorithm for recovering the 3-D shape from a single shaded image is proposed. In the proposed algorithm, by using the relation between the height and surface gradient (p, q), a set of linear equations is derived from the linearized reflectance function. Then the 3-D surface is recovered by employing the conjugate gradient technique. In order to improve the convergence speed of the solution, we also employ the hierarchical basis function and multiresolution images in the algorithm. A method for determining the regularization parameter, which is determined by trial and error in the conventional approach, is also introduced. In addition, the proposed algorithm attempts to recover the 3-D surface without requiring the boundary conditions, making it suitable for a real-time implementation. Simulation results for real image as well as synthetic image are provided to demonstrate the performance of the proposed algorithm.

  • PDF

The Doubly Regularized Quantile Regression

  • Choi, Ho-Sik;Kim, Yong-Dai
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.5
    • /
    • pp.753-764
    • /
    • 2008
  • The $L_1$ regularized estimator in quantile problems conduct parameter estimation and model selection simultaneously and have been shown to enjoy nice performance. However, $L_1$ regularized estimator has a drawback: when there are several highly correlated variables, it tends to pick only a few of them. To make up for it, the proposed method adopts doubly regularized framework with the mixture of $L_1$ and $L_2$ norms. As a result, the proposed method can select significant variables and encourage the highly correlated variables to be selected together. One of the most appealing features of the new algorithm is to construct the entire solution path of doubly regularized quantile estimator. From simulations and real data analysis, we investigate its performance.

A Short-Term Wind Speed Forecasting Through Support Vector Regression Regularized by Particle Swarm Optimization

  • Kim, Seong-Jun;Seo, In-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.247-253
    • /
    • 2011
  • A sustainability of electricity supply has emerged as a critical issue for low carbon green growth in South Korea. Wind power is the fastest growing source of renewable energy. However, due to its own intermittency and volatility, the power supply generated from wind energy has variability in nature. Hence, accurate forecasting of wind speed and power plays a key role in the effective harvesting of wind energy and the integration of wind power into the current electric power grid. This paper presents a short-term wind speed prediction method based on support vector regression. Moreover, particle swarm optimization is adopted to find an optimum setting of hyper-parameters in support vector regression. An illustration is given by real-world data and the effect of model regularization by particle swarm optimization is discussed as well.

Sub-pixel motion compensated deinterlacing technique (부화소 단위의 움직임 정보를 고려한 순차주사화)

  • 박민규;강문기
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.143-146
    • /
    • 2001
  • HDTV(high-definition television)와 개인용 컴퓨터의 발전에 따라 비월주사(interlaced scanning) 방식의 신호와 순차주사(progressive scanning) 방식의 신호 상호간의 변환에 대한 요구가 점점 늘어나고 있다. 이에 따라 비월주사 방식을 순차주사 방식으로 바꾸어주는 순차주사화(deinterlacing)가 활발히 연구되고 있다. 본 논문에서는 부화소(sub-pixel) 단위의 움직임 정보를 고려한 영상재결합 방법을 기반으로 한 순차주사화 알고리즘을 제안한다. 그러나 국부 움직임이 있는 영역에서는 영상재결합이 효과적이지 않으므로 적절한 문턱값을 이용하여 이러한 영역을 결정하고 에지를 이용한 보간 방법으로 순차주사화 한다. 또한 잘못된 움직임 추정으로 야기되는 문제들을 해결하기 위해, 각 영역과 입력 영상에 따라 다른 움직임 에러를 고려해서 정규화 값(regularization parameter)을 결정함으로 움직임 에러를 효율적으로 제거하였다 제안된 방법은 주관적 측면과 객관적인 측면에서 모두 우수한 결과를 실험적으로 보였다.

  • PDF