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A B S T R A C T   

In order to better perform thermal hydraulic calculation and analysis of supercritical water reactor, based on the 
experimental data of supercritical water, the model training and predictive analysis of the heat transfer coeffi-
cient of supercritical water were carried out by using the support vector machine (SVM) algorithm. The changes 
in the prediction accuracy of the supercritical water heat transfer coefficient are analyzed by the changes of the 
regularization penalty parameter C, the slack variable epsilon and the Gaussian kernel function parameter 
gamma. The predicted value of the SVM model obtained after parameter optimization and the actual experi-
mental test data are analyzed for data verification. The research results show that: the normalization of the data 
has a great influence on the prediction results. The slack variable has a relatively small influence on the accuracy 
change range of the predicted heat transfer coefficient. The change of gamma has the greatest impact on the 
accuracy of the heat transfer coefficient. Compared with the calculation results of traditional empirical formula 
methods, the trained algorithm model using SVM has smaller average error and standard deviations. Using the 
SVM trained algorithm model, the heat transfer coefficient of supercritical water can be effectively predicted and 
analyzed.   

1. Introduction 

The heat transfer coefficient (HTC) is an important parameter in the 
thermal hydraulic calculations of nuclear reactors and the related heat 
exchange system calculations, because the magnitude of the heat 
transfer coefficient affects the power output of the heat exchange sys-
tem. The current results show [1]: under supercritical pressure, heat 
transfer enhancement (HTE) may occur, and heat transfer deterioration 
(HTD) may also occur. The occurrence of heat transfer deterioration of 
supercritical water is closely related to the magnitude of the actual heat 
transfer coefficient. At present, the research on heat transfer coefficient 
under supercritical pressure [2,3] is mainly limited to the corresponding 
supercritical water heat transfer experiment, and each researcher fit the 
corresponding empirical correlation according to the experimental data. 
However, these formulas tend to be too complicated, and the influence 
of each parameter on the heat transfer coefficient is not intuitive. H. 
Zahlan [4] et al. calculated the heat transfer coefficient within the su-
percritical pressure range by a look-up table, and the heat transfer 

coefficient obtained by this method reached high accuracy, but the 
limitation of the method was the range of experimental parameters. 
Therefore, at present, due to the actual limitations of the experimental 
conditions, under supercritical pressure, it is difficult to predict the 
change of heat transfer coefficient accurately with unified working 
conditions. Wadim Jager [5] et al. systematically evaluated the heat 
transfer capacity of the TRACE program in the supercritical water 
environment, and assessed the prediction capability of different empir-
ical correlations, and in most cases it showed the discrepancies of the 
predicted heat transfer coefficient near the pseudocritical point 
compared with experimental results. 

With the continuous improvement of machine learning algorithms 
and the continuous improvement of the performance of modern com-
puter solvers, various machine learning algorithms can be used to 
effectively predict and analyze the working condition parameters of the 
actual thermal system. Alessandro Mazzola [6] used an artificial neural 
network system to predict critical heat flux (CHF), showing that the 
method of artificial neural network can achieve a satisfactory accuracy 
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value when dealing with thermal hydraulic heat transfer parameters. 
HaoPeng [7] et al. analyzed the thermal-hydraulic performance of 
compact heat exchangers (CHEs) with the use of two methods: support 
vector machine (SVM) and artificial neural network (ANN). Based on the 
algorithm of Bayesian support vector regression, Wang Jinsheng [8] 
et al. proposed an adaptive reliability analysis method in engineering 
structure. Yao Pengchuan [9] established an abnormal condition 
monitoring system based on the typical data-driven algorithms such as 
support vector machine and local outlier factor, which can timely pre-
dict the abnormal state of nuclear power plant with high accuracy. 
Based on support vector machine, Yi Lingfan [10] et al. used an algo-
rithm to effectively locate analog circuit faults effectively which could 
perform feature extraction and failure mode recognition of discrete data. 
Wang Xiaolong [11] et al. used support vector machine and BP neural 
network to carry out numerical experiments on the variable load oper-
ation conditions of nuclear power plant. The results showed that 
methods based on data statistical learning, especially the one based on 
support vector machine, could obtain a load prediction training model 
which met the requirement of accuracy. It can be seen that support 
vector machines (SVMs) and related machine learning algorithms have 
been more and more widely and deeply applied in various fields such as 
thermal hydraulics and failure mode recognition diagnosis. When using 
machine learning algorithm models to predict the parameters of thermal 
hydraulics, it is generally essential to analyze the sample distribution 
characteristics of the data set. When the distribution in different cate-
gories is unbalanced, it will lead to sampling bias in the final prediction 
results. For sample-balanced datasets, adjustments of model optimiza-
tion are required for the hyper-parameters of the model. The 
hyper-parameters of the model need to be set in advance before model 
training, so the rationality of the setting has a large impact on the pre-
diction results. Appropriate model hyper-parameters can improve the 
prediction accuracy of thermal-hydraulic parameters. Machine learning 
algorithms use the data-driven prediction model, and the prediction 
result is closely related to the actual data characteristics; while for the 
traditional relational prediction model, it is based on certain physical 
analytical formulae. It has clear physical meanings, and the formula 
structure and parameters are fixed after they are determined. However, 
with the enrichment and expansion of experimental data, the calculation 
results of different traditional predictive models will be quite different. 

In the research related to supercritical water experiments, the ex-
periments are limited to some specific experimental working conditions. 
The operating cost of experiments under different variable working 
conditions is very high. On the basis of the experimental data of su-
percritical water heat transfer, the general preliminary work is 
analyzing parameter sensitivity and the influence of the measurement 
error caused by experimental facilities. The data-driven statistical 
analysis method is a necessary and useful approach to make a quanti-
tative analysis of the parameters which affect the heat transfer coeffi-
cient of supercritical water. On the basis of the widely collected 
experimental data related to the heat transfer coefficient of supercritical 
water, effective machine learning algorithms such as support vector 
machine (SVM) are used to train and learn from the existing experi-
mental data. The algorithm help to better analyze the actual influence of 
different model parameters on the prediction accuracy of the heat 
transfer coefficient of supercritical water, thereby better predicting the 
characteristics of the coefficient change under different working con-
ditions. It provides a new research method for the study of the heat 
transfer coefficient characteristics of supercritical water. 

The main progress and innovative features of the paper are as fol-
lows: the first chapter is to explain the source of experimental data and 
analyze the statistical characteristics of the main experimental data. The 
second chapter mainly introduces the model calculation principles of the 
support vector machine algorithm, the main methods of parameter 

setting and adjustment optimization, and the main evaluation in-
dicators. The third chapter includes the trend change characteristics of 
supercritical water heat transfer coefficient predicted by different sup-
port vector machine parameters, the error analysis of the prediction 
results of different heat transfer types, the comparison verification of 
results between different algorithm models, and the range expansion 
analysis of prediction results. The last chapter focuses on the main 
conclusion. 

2. Data source 

The data selected for the prediction and analysis of the heat transfer 
coefficient of supercritical water is from the experimental data of su-
percritical water in a smooth round tube vertically upwards published in 
the public journal (1965–2015). The parameters selected which are 
related to the heat transfer coefficient of supercritical water include 
specific enthalpy value, pipe diameter, mass flow, heating power and 
system pressure. In the process of data selection, the experimental fig-
ures of supercritical water heat transfer coefficient changing with spe-
cific enthalpy under different states were obtained from various 
literatures at first. Then, set the upper and lower limits of the image 
range by GetData software, the curve graphical files are extracted and 
converted into the actual numerical type files through the data point 
capture function in GetData software. Finally summarize the heat 
transfer coefficient data which are obtained in numerical type. The 
statistics of the main experimental data are shown in Table 1. 

After the correlation analysis of the experimental data in Table 1, the 
correlation matrix of the heat transfer coefficient of supercritical water 
is shown in Fig. 1. 

Fig. 1 shows the correlation statistics of the parameters obtained 
from the experimental data in supercritical water. The numbers in Fig. 1 
are called the Pearson correlation coefficient, which is used to measure 
the degree of linear correlation between two statistical variables x and y, 
ranging between − 1 and 1. Pearson correlation coefficient is a result 
obtained from statistical calculation based on the actual experimental 
data. The experimental data used for the coefficient come from Table 1. 
The correlation coefficient in Fig. 1 is only a statistical result of the 
experimental data. While the actual experimental data changes, the 
correlation coefficient may change to some extent. The relevant infor-
mation expressed in Fig. 1 is only used as a macro statistical reference, 
reflecting the degree of positive or negative correlation between the 
currently selected heat transfer coefficients. The calculation formula for 
Pearson correlation coefficient is as follows: 

Px,y =

∑n

i=1
(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − x)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − y)2

√ (1) 

In formula 1, x and y are any two different parameters in Fig. 1 i 
represents the sequence number of the actual samples, and n represents 
the number of all samples. x and y are the average values of these two 
experimental parameters, respectively. 

When the value approaches 1, it indicates a stronger positive cor-
relation between the two statistical variables. When the value ap-
proaches − 1, it indicates a stronger negative correlation between the 
two statistical variables. In Fig. 1, different colors are used to indicate 
the correlation between parameters. The greener the rectangle is, the 
stronger the positive correlation is between the two variables. The 
redder the rectangle is, the stronger the negative correlation is. As can be 
seen from Fig. 1, the positive correlation between mass flow and heating 
power, and that between mass flow and heat transfer coefficient are 
relatively strong. The negative correlation between heating power and 
specific enthalpy is strong. 
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3. Calculation model 

3.1. Introduction of support vector machine 

Support Vector Machine (SVM) is one of the most popular algorithms 
in modern machine learning, and this algorithm [12] was proposed by 
Vapnik in 1992 which can handle complex physics problems with high 
nonlinearity. The fundamental idea is to map a feature space to another 
feature space at higher latitudes by the means of nonlinear trans-
formation, so as to obtain the optimal linear delimitation hyperplane. 
Support vector machine can directly calculate the distance between 
different data points in the extended feature model through the kernel 
functions processing. According to different mapping methods, kernel 
functions are mainly divided into linear kernel functions, polynomial 
kernel functions and radial basis kernel functions. In the process of 
finding the optimal linear demarcation hyperplane, which means the 
error loss function is minimal, the minimized function is calculated as 
follows: 

L(ω, ε)=ωT ω + C
∑n

i=1
εi (2) 

In the equation, ω is the weight coefficient of the input variable. C is 
the regularization penalty parameter. ε is the relaxation variable which 

is used to implement the soft margin classifier, which allows a certain 
prediction error in order to achieve the better generalization ability. 

The calculation of the radial basis kernel function is based on the 
following formula: 

K
(
xi, xj

)
= exp

(
− γ
⃒
⃒xi − xj

⃒
⃒2
)

(3) 

In the process of calculating the distance between data points, 
because the kernel functions are very sensitive to the selection range of 
the initial data value, the input data need to be normalized first. In the 
Python language, data normalization can be achieved with the use of 
MinMaxScaler() function. The normalization is calculated as follows: 

xnew =
x − xmin

xmax − xmin
(4)  

3.2. Parameters of the model 

When using a support vector regression machine to predict the pa-
rameters of supercritical water, the main parameters used are shown in 
the following table. 

The parameter range of the support vector machine selected in 
Table 2 is set according to the actual characteristics of the supercritical 
water experimental data. Based on the sample size of the supercritical 

Fig. 1. The correlation matrix of the heat transfer coefficient in supercritical water.  

Table 1 
Supercritical water experiment statistical data.  

Dataset Hb [kJ/kg] D [mm] G [kg/m2s] q [kW/m2] p [MPa] Htc [kW/m2K] Point number 

Ackerman [2] 1012.96–2551.31 9.40 1220 1260 22.75 5.72–11.70 15 
Glushchenko [3] 512.97–1977.11 1.00 2200 1150–2960 23.50 10.35–44.39 63 
Griem,H [17] 1521.87–2410.25 14.00 500–1000 300–400 25.00 7.26–26.66 71 
H.Y. Gu [25] 1343.44–2451.43 7.60–10 600–1000 700–1000 23–25 3.25–23.86 359 
Han wang [16] 889.80–3135.87 2.00 400–1000 200–400 23–28 3.42–55.76 266 
Herkenrath [18] 1512.39–2755.58 10.0–20.0 1000 500–750 24–25 6.60–20.21 69 
JianguoWang [26] 1253.78–2557.11 26.00 900 300–500 26.00 2.05–22.48 37 
Jie Pan [27] 1428.87–3043.12 17.00 400–1200 284–663 22.5–30 1.41–20.82 305 
Kirillov [19] 1551.88–2204.54 10.00 496 239 24.03 7.17–14.26 42 
Lee [20] 1165.69–2108.35 38.10 542–1627 252–1101 24.10 4.38–22.30 105 
Ornatskiy [21] 451.30–2639.13 0.70 3000 1180–2960 23.50 10.22–98.08 104 
Pan jie [30] 1349.30–3162.85 17.00 1009–1626 216–649 22.5–30 2.46–157.55 266 
Sarah Mokry [14] 1570.37–3142.97 10.00 203–1499 166–884 23.9–24.2 1.25–48.84 1323 
Shitsman [22] 1381.38–2934.82 10.00 430 210–386 23.30 1.72–24.90 106 
Swenson [23] 659.64–3053.54 9.42 2150 786–1730 23–31 13.07–63.63 110 
Vikhrev [13] 624.77–2679.82 20.40 1400 700–1160 26.50 6.47–39.36 72 
Wang Fei [31] 1322.94–2479.42 10.00 450–1500 450–1250 23–26 1.54–29.91 679 
Xu feng [32] 1194.61–2781.18 12.00 600–1200 200–600 23–30 10.21–171.08 353 
Yamagata [15] 1089.93–2996.40 7.5–10 1114–1260 233–930 22.6–29.4 7.91–78.22 507 
Yoshida [28] 1233.30–2707.81 10.00 1180 698 24.50 14.43–38.33 40 
Zhu Xiaojing [29] 1239.79–2852.95 26.00 600–1200 200–400 26–30 1.04–41.87 78 
Zhu, X.J [24] 1621.69–2677.27 26.00 600 200 26–30 4.48–18.92 76 
Total 451.30–3162.85 0.7–38.1 203–3000 166–2960 22.50–31 1.04–171.08 5130  
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water test data in Table 1, it was randomly divided into training set and 
test set according to the ratio of 7:3. Among the model parameters, 
parameter C is the regularization penalty parameter. The smaller the C 
value is, the smaller the predicted penalty is while the more corre-
sponding interval violations are. The bigger the C value is, the greater 
the penalty predicted is while the less the corresponding interval vio-
lations are. Epsilon is a slack variable parameter, the size of which de-
termines the size of the support vector width of the support vector 
machine model. The larger the epsilon is, the larger the model support 
vector width is, and the smaller the support vector width is. Gamma is 
the coefficient of the kernel function which determines the width of the 
bell-shaped curve assumed by the Gaussian distribution of the charac-
teristic data. The larger the gamma is, the narrower the curve is and the 
higher the complexity of the model is, otherwise the wider the bell curve 
is and the smaller the complexity of the model is. Kernel is the type of 
kernel function used in the algorithm. RBF kernel function with the best 
performance is used by default within the range allowed by training time 
complexity. TOL is the residual convergence condition, and training is 

stopped when the error reaches the specified condition value. Cache_size 
is used to limit the size of each calculation. 

3.3. Calculation process 

The main calculation process is mainly shown in Fig. 2: 
It can be seen from the calculation flow chart in Fig. 2 that the pa-

rameters such as specific enthalpy, pipe diameter, flow, and power 
pressure in Table 1, are first normalized and set as the input parameters 
of SVM model. The target variable is the heat transfer coefficient of 
supercritical water. When performing the calculation of the support 
vector machine, the corresponding kernel function and kernel parame-
ters are first determined, and the kernel distance between different 
sample points is calculated according to the training data. During the 
model training, the constraint set of the samples is assembled into a 
matrix to be solved, and the corresponding solution is carried out by the 
solver. During the calculation, the vector within a certain distance from 
the nearest point of the target variable is continuously looked for and 
identified as the corresponding support vector. After the training model 
satisfies the corresponding algorithm stopping conditions, the optimal 
support vector obtained is used to make further regression prediction of 
the test data. In the process of model training, the prediction ability of 
the model is mainly improved by optimizing hyperparameters. The 
hyperparameters for optimization mainly include C, epsilon, and 
gamma. In the process of hyperparameter optimization, random search 
and Bayesian search are used to optimize the hyperparameter. In 
random search process, each search parameter is completely random 
and has no relationship with the performance of previous search 

Fig. 2. SVM Calculating flowchart.  

Table 2 
Ranges of the main parameters.  

Parameter Meaning Range 

C Regularization penalty parameter 1–50000 
ε Slack variable 0.01–5.0 
γ The reciprocal of the width of the Gaussian kernel 0.01–200 
kernel Kernel function option RBF 
tol The stop conditions of algorithm 0.001 
cache_size Size of the kernel cache 200  
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Fig. 3. The effects different parameters had on SVM prediction results.  
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parameter results. Unlike the process of random search, Bayesian search 
process uses Bayesian optimization technology to model the hyper-
parameter search space. During each process of optimizing hyper-
parameter, the model structure of the search space is evaluated based on 
the performance results of historical searches, in order to determine the 
next parameter combination which is more likely to provide better 
performance results as a new candidate parameter. 

3.4. Evaluation parameters 

In the process of training the support vector regression machine 
model of supercritical water heat transfer coefficient, the determination 
coefficient is used as the evaluation index of the predictive accuracy 
performance of the model. The determination coefficient is also called 
R2, and the coefficient is between 0 and 1. When the coefficient is getting 
closer to 1, it indicates that the regression prediction performance of the 
overall model gets better, otherwise the performance gets worse in turn. 
This parameter is determined by the variance of the prediction results of 
the data set. The determination coefficient is calculated as follows: 

R2 = 1 −
RSS
TSS

= 1 −

∑n

i=1

(
htcpre − htcexp

)2

∑n

i=1

(
htcexp − htcavg

)2
(5) 

In the above equation, RSS is the residual sum of squares of the 
calculating data. TSS is the overall square error of calculating data. The 
parameter n is the number of data collection sample size. htcpre is the 
output value of the super critical water heat transfer coefficient pre-
dicted by the model. htcexp is the actual experimental value of the su-
percritical water heat transfer coefficient, and htcavg is the average of all 
the experimental values of the supercritical water heat transfer 
coefficient. 

4. Calculating results 

4.1. The effects parameter changes had on SVM prediction 

Using the supercritical water experimental data in Table 1, the 
optimal parameters of the support vector regression machine were 
analyzed, and calculation results changes of SVM prediction of super-
critical water heat transfer coefficient caused by different parameters 
were shown in the figure below. 

Fig. 3 shows the change of heat transfer coefficient in supercritical 
water predicted by the support vector regression machine before and 
after the data are normalized when different regularization parameters 
C, epsilon parameters and gamma parameters change respectively. In 
Fig. 3a–c, the ordinates are all prediction accuracy values. The abscissa 
axes are the C value of the regularization penalty parameter, the epsilon 
value of the relaxation variable, and the gamma value of the Gamma 
parameter of the width parameter of the Gaussian kernel function 
respectively. In Fig. 3a, the two curves consisting of hollow triangles are 
the effect of the change in C value on the prediction accuracy before the 
data is normalized. The two curves consisting of solid squares and circles 
are the changes in the C value obtained after data normalization. As can 
be seen from Fig. 3a, data normalization has a great influence on the 
accuracy of SVM prediction results. Before data normalization, the 
average prediction accuracy was only about 0.5894, and after data 
normalization, the average prediction accuracy reached about 0.8247. 
However, with the increase of the C value, the penalty parameter, the 
prediction accuracy increases rapidly at the beginning, and then grad-
ually increases steadily. Fig. 3b shows how the prediction accuracy 
changes with the relaxation variable epsilon when the C value remains 
constant. It can be seen that with the gradual increase of the relaxation 
variable, the prediction accuracy improves to a certain extent first, but 
when the relaxation variable increases to about 1.7, the prediction ac-
curacy gradually remains stable and fluctuates within a certain range. In 

general, the magnitude of changes in relaxation variables has a rela-
tively small effect on prediction accuracy. Fig. 3c shows how the pre-
diction accuracy changes with the change of gamma parameter when 
both the C value and the relaxation variable remain constant. When the 
gamma parameter is smaller, the prediction accuracy is also lower. As 
the gamma parameter gradually increases, the prediction accuracy in-
creases rapidly at the beginning, and then increases gradually and 
slowly. When the gamma parameter reaches 10, both the prediction 
accuracy of the training set and the prediction accuracy of the test set 
increase slightly. By comparing and adjusting the above three parame-
ters, it can be seen that after adjusting the gamma parameters, the 
prediction accuracy achieves the highest value. 

4.2. Model verification 

The predictive value of the heat transfer coefficient obtained after 
parameter optimization is compared with the actual value, and the 
comparative change of the obtained verification result is shown in Fig. 4. 

Fig. 4 shows the comparative change distribution of the actual and 
predicted values of the heat transfer coefficient. The abscissa axis refers 
to the actual experimental value of the heat transfer coefficient, and the 
vertical axis is the predicted value of the heat transfer coefficient ob-
tained by SVM after parameter optimization. It can be seen that most of 

Fig. 4. The comparison between predictive values by SVM and actual values.  

Fig. 5. Comparison of hyperparameter space search points and optimal points.  
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the prediction errors are within the range of 10% comparing predicted 
value and the actual value. When the actual heat transfer coefficient is 
relatively smaller, the predicted value obtained by SVM is closer to the 
actual value. When the actual heat transfer coefficient is relatively 
larger, especially after the actual heat transfer coefficient exceeds 100, 
the predicted value obtained by SVM is relatively consistent compared 
with the actual value. Therefore, by optimizing the hyperparameters of 

the model, the prediction performance can be significantly improved. In 
the process of optimizing the hyperparameters, the final determined 
model hyperparameters are: C is 1256.0696, epsilon is 0.7377, and 
gamma is 132.1258. Because the optimal hyperparameters of the model 
are within a range, they are not limited to a particular hyperparameter. 
In order to display the distribution characteristics of the optimal 
hyperparameters points, the spatial distribution of the optimal 

Table 3 
Optimal hyperparameters points for spatial search.  

Random search optimal points Bayesian search optimal points 

C gamma epsilon test accuracy C gamma epsilon test accuracy 

338.2947 144.4140 0.8394 0.9686 2026.4206 63.5176 1.4077 0.9605 
518.0101 154.0656 0.9506 0.9683 2050.1148 78.8360 0.1000 0.9599 
419.5296 71.4495 0.2274 0.9643 495.7310 197.9199 1.0489 0.9469 
315.1745 111.0549 0.8813 0.9666 1609.9130 77.5771 0.8595 0.9563 
922.1496 63.4902 0.9783 0.9615 729.2056 200.0000 1.5579 0.9410 
2483.0844 86.8318 1.1029 0.9451 1627.2387 63.3273 0.8449 0.9574 
1651.6495 91.3406 0.5496 0.9470 2454.5712 166.3109 0.3501 0.9541 
906.0821 87.8153 2.5376 0.9649 309.4458 133.9968 1.2453 0.9504 
915.4069 84.9628 0.8883 0.9752 1142.5376 117.7618 0.5000 0.9587 
245.9282 102.8989 0.1237 0.9744 803.5004 173.6569 0.1000 0.9652 
1102.3410 80.5425 0.4608 0.9740 568.0877 180.4795 0.1000 0.9655 
1107.0718 62.6604 1.3022 0.9722 1256.0696 132.1258 0.7377 0.9712  

Fig. 6. Distribution changes of errors.  

Fig. 7. Accuracy comparison of different calculation methods  
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hyperparameters points and all search points within the entire spatial 
range is shown in Fig. 5. This figure shows the position of all searched 
points and each optimal point in the hyperparameters space after more 
than 20 times optimizations. The red dots represent the position of all 
hyperparameters points in previous spatial searches. The green dots 
represent the position of optimal hyperparameters points obtained 
during each spatial search process. In Fig. 5, it can be seen the distri-
bution characteristics of the optimal hyperparameters points in the 
overall space. The actual values of all optimal hyperparameters points in 
Fig. 5 are shown in Table 3. 

4.3. Distribution of error 

After statistical analysis of error at the sample points of the test data, 
the absolute error and relative error distribution changes obtained are 
shown in Fig. 6. 

Fig. 6 shows the change in prediction error of experimental sample 
points in the test set. The abscissa axis refers to the sequence number of 
the actual experimental sample point, and the index of vertical axis is the 
absolute and relative deviation of the prediction, respectively. The ab-
solute error is the actual deviation between the actual value and the 
predicted value, while the relative error is the percentage of the actual 
deviation and actual value. As can be seen from Fig. 6a, the absolute 
error generated during HTE is the largest, the absolute error generated 
during NHT comes second, and the absolute error of HTD is the smallest. 
The HTD absolute error is mainly distributed within ±5 (kW/m2K), 
while the actual error excess is mainly the positive absolute error. As can 
be seen from Fig. 5b, the relative error is mainly distributed within 
±25%. The absolute error of HTE is mainly the relative error in the 
positive direction, and the relative error excess of NHT and HTD is 
mainly based on the relative error in the negative direction. It indicates 
that when the prediction error is mainly positive, the absolute value of 
the actual heat transfer coefficient is relatively large, so the relative 
value of the positive error is smaller compared with the absolute value. 
When the prediction error is mainly negative, the absolute value of the 
actual heat transfer coefficient is relatively lower, so the relative value of 
the negative error has a large deviation from the absolute value. 

4.4. Comparison of the results of different calculation methods 

The accuracy results of supercritical water heat transfer coefficient 
prediction obtained by support vector machine are compared with those 
of other existing traditional calculation methods and the comparison is 
shown in Fig. 7. 

Fig. 7 shows that the average deviation, standard deviation and other 
parameters predicted by SVM on the heat transfer coefficient of super-
critical water are compared with the indicators of other calculation 
methods [15,17,23,33–36]. Through the comparison, it can be seen that 
in the SVM method, the average deviation of HTE is the smallest, the 
average deviation of HTD is the largest, and the average deviation of 
NHT is moderate. The standard deviation of HTD is the largest, the 
standard deviation of NHT is the smallest, and the standard deviation of 
HTE is moderate. In general, the average and standard deviations of 
SVM method are smaller compared to other existing calculation 
methods. It shows that the SVM method can make a good prediction of 
the heat transfer coefficient of supercritical water, and has a better 
prediction accuracy. 

4.5. Comparison of predicted and experimental value 

The heat transfer coefficient in supercritical water is predicted by 
using the trained SVM model, and the changes of predicted and exper-
imental values of heat transfer coefficient under different pipe diameters 
and different system pressure conditions are shown in Fig. 8. 

Fig. 8 shows the comparison between the heat transfer coefficient 
predicted by the support vector machine model and the heat transfer 
coefficient under actual experimental conditions at different pipe di-
ameters and different pressures. In Fig. 8a, the distribution of the heat 
transfer coefficient is shown with the change of enthalpy value under 
different pipe diameter conditions when the flow rate is 1000 kg/m2 s, 
the pressure is 25 MPa, and the heating power is 700 kw/m2. With the 
gradual increase of pipe diameter, the peak of heat transfer coefficient 
gradually increases, which indicates that when the pipe diameter be-
comes larger, it will inevitably bring about a rapid increase in the overall 
mass flow rate in the pipeline, so it will effectively strengthen the heat 
transfer in the pipeline. The heat transfer enhancement effect in this 
pipeline is most obvious when the diameter is with the range of 12–15 
mm. With the further increase of the pipeline diameter, the heat transfer 
strengthening phenomenon of the heat transfer coefficient gradually 
weakens, indicating that the effect of heat transfer strengthening has 
become no longer greatly obvious when further increasing the diameter 
of the pipeline. Fig. 8b shows the distribution of heat transfer coefficient 
with the change of enthalpy.under different system pressure conditions 
when the flow rate is 600 kg/m2 s, the pipe diameter is 26 mm, and the 
heating power is 200 kw/m2. As the pressure of the system gradually 
increases, the peak value of the heat transfer coefficient becomes smaller 
in general. This phenomenon is closely related to the physical parame-
ters of supercritical water near the critical point. Especially when the 

Fig. 8. The comparison of predicted and experimental value at different conditions.  
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system pressure exceeds 25 MPa, the peak heat transfer coefficient drops 
very quickly. As the system pressure continues to increase, the peak 
process of the heat transfer coefficient is no longer obvious. 

4.6. Extended prediction of model 

The trained model is used to further predict and analyze the changes 
of the heat transfer coefficient of supercritical water under different 
parameters, and the prediction result changes of the heat transfer co-
efficient are obtained under different heating power conditions and 
different mass flow conditions, as shown in Fig. 9. 

Fig. 9 shows the characteristics of the extended prediction results of 
the supercritical water heat transfer coefficient using the trained SVM 
model. Through the extended prediction, it can be seen that the change 
characteristics of the heat transfer coefficient in supercritical water are 
different when heating power and mass velocity are selected as the 
single variables in respective experiments. Due to the lack of experi-
mental data when heating power and mass velocity change under the 
same parameter conditions, the output can be predicted by the model 
and it can be observed that the heat transfer coefficient changes at 
different heating power and mass velocity. Fig. 8a shows that under the 
same mass flow, pipe diameter and pressure conditions, as the heating 
power increases, the peak of the heat transfer coefficient moves towards 
the low specific enthalpy, and the peak of the heating power gradually 
decreases. It can be seen from Fig. 8b that under the same heating 
power, pipe diameter and pressure conditions, the peak of heat transfer 
coefficient gradually increases as the mass flow increases. Under these 
conditions the peak heat transfer coefficient at larger mass velocity 
gradually shifts towards the larger specific enthalpy. However, through 
comparison, it can be found that the change of peak shifting to a higher 
specific enthalpy value caused by increasing the mass velocity is 
significantly smaller than that caused by increasing heating power. 
Because it is limited by the parameter range of supercritical water heat 
transfer experimental data, the model can be further trained and opti-
mized on the basis of increasing the supercritical water experimental 
data. On the premise of ensuring that the experimental parameters are 
set at the upper and lower limits of the unified range, the supercritical 
water test data with timestamps which meet the condition specifications 
can be further integrated into the model to improve the prediction 
performance of the training model. 

5. Conclusion 

Using the support vector machine algorithm, the prediction model of 
the heat transfer coefficient of supercritical water is trained and 
analyzed on the basis of the heat transfer experimental data of super-
critical water, and the main conclusions are as follows:  

(1) When the support vector machine algorithm is used to calculate 
and analyze the experimental data of supercritical water, the 
normalization of the data has a great impact on the prediction 
results. The average prediction accuracy before and after 
normalization of the data was 0.5894 and 0.8247, respectively.  

(2) The influence of slack variables on the magnitude of the accuracy 
change in predicting the heat transfer coefficient is relatively 
small. The change of gamma parameter has the greatest influence 
on the accuracy prediction of heat transfer coefficient. When the 
gamma parameter reaches 10, the sequential increasing of the 
parameter no longer has a significant impact on the subsequent 
improvement of prediction accuracy. In the spatial distribution of 
hyperparameters, the optimal hyperparameters spatial distribu-
tion were obtained.  

(3) In the optimized SVM prediction model, the absolute error is 
mainly distributed within ±5, and the actual error excess is 
mainly the positive absolute error. The relative error is mainly 
distributed within ±25, while the relative error excess is mainly 
based on the negative relative error, and the absolute value of the 
actual heat transfer coefficient is relatively low. Compared to 
other existing calculation methods, the SVM model has a better 
prediction accuracy. 
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Fig. 9. Changes of heat transfer coefficient predicted by the model at different parameters.  
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