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Abstract

In this paper, we present a regularized mixed norm
multichannel image restoration algorithm. The prob-
lem of multichannel restoration using both within- and
between- channel deterministic information is consid-
ered. For each channel a functional which combines
the least mean squares (LMS), the least mean fourth
(LMF), and a smoothing functional is proposed. We
introduce a mixed norm parameter that controls the
relative contribution between the LMS and the LMF,
and a regularization parameter that defines the degree
of smoothness of the solution, both updated at each
iteration according to the noise characteristics of each
channel. The novelty of the proposed algorithm is that
no knowledge of the noise distribution for each channel
is required, and the parameters mentioned above are
adjusted based on the partially restored image.

1. INTRODUCTION

The mean squared error (MSE) has been traditionally
used in formulating the restoration problem, resulting
in the least mean squared (LMS) approach. The reason
for this is that it leads to mathematically tractable so-
lutions and yields optimal results when the contaminat-

ing noise has Gaussian distribution [1, 2, 3}. In a num--

ber of applications, the contaminating noise may be
non-Gaussian or a combination of several noise types.
It has been shown that the LMF approach outper-
forms the LMS under certain noise distributions, such
as sub-Gaussian distributions. {4]. The combination of
the LMS and LMF approach was introduced in image
restoration in [5, 6] for single channel images.

Since multichannel images may be degraded due to
crosstalk or spectral blurs between channels, it is ex-
pected that the optimal restored multichannel image
should show better performance than the restored im-
age without the use of cross information. In this paper,
a multichannel regularized mixed norm image restora-
tion algorithm is proposed. The mixed norm smooth-
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ing functional for each channel is determined by in-
corporating not only within-channel information but
also between-channel information. The two parame-
ters (the mixed norm parameter controlling the rela-
tive importance between the LMS and the LMF, and
the regularization parameter controlling the trade-off
between the mixed norm functional and the smooth-
ing functional) for each channel are adjusted from the
partially restored image. No prior information about
the noise distribution and the bound of high pass en-
ergy is therefore required. Also, it is shown that the
appropriate choice of these two parameters yields to a
convex regularized mixed norm smoothing functional
and therefore a unique solution is obtained.

The paper is organized as follows. In section 2, the
multichannel degradation model and the properties of
the kurtosis are reviewed. A stabilizing multichannel
smoothing mixed norm functional is proposed in sec-
tion 3. In addition, the properties of the proposed func-
tional and the convergence of the iterative solution used
are analyzed. Experimental results and conclusions are
discussed in section 4 and 5.

2. BACKGROUND

A linear multichannel degradation model is assumed,
and the model is described by (2]

y=Hz +n, 1

where the vectors y, z, and n are the observed im-
age, the original image, and the noise, respectively.
We assume that the noise is uncorrelated zero mean.
For an N channel image where each channel contains
M x M pixels, we have y = [Ty, -, y}])", = =
[T, 2T, -+, z%)T, and n = [n],n], -, n%]T, where
T denotes the transpose of a vector or matrix and each
of the M? x 1 vectors ¥;, T;, and n; represents the lex-
icographic ordering of each channel image. The multi-
channel degradation matrix H of size NM? x NM 2is



assumed to be known and is given by

Hy,y, Hy ... Hy
H= H.21 H.zz H?N @)
Hml Hm2 HNN

Submatrices H;; and H;j, for ¢ # j are of size M2 x M?
and represent the within-channel and between-channel
degradation, respectively. Clearly, if all elements of
cross channel degradation are zero, the degradation
model in (2) leads to N separated single channel mod-
els.

The ith channel degradation model providing a so-
lution to Eq. (1) can be rewritten as

v = Hiz +n;, fori=1,2,---, N, (3)

where
H; = {Hy, Hi,- -+, Hin]

is the sth block row matrix of size M2 x NM?,

In most applications the ith noise term n; is as-
sumed to be uncorrelated zero-mean Gaussian. There
are application, however, for which the additive noise is
characterized by other distributions, such as, Uniform,
Laplacian, or a combination of them. In the Gaussian
noise case, the LMS approach is used for solving the
problem described in Eq. (3). However, for other noise
distributions norms of higher order need to be used. It
was shown that under certain conditions such as sub-
Gaussian noise, the LMF and other higher criteria ex-
hibit improved performance compared to the LMS. The
converse is true for Gaussian and super-Gaussian noise
signals.

The kurtosis is utilized to determine the degree of
Gaussianity of a random signal. For a zero mean ran-
dom variable n;, the kurtosis is defined by

X(n:) = B[nf] — 3E%[n]). (4)

The kurtosis is zero for Gaussian signals, it is positive
for super-Gaussian or leptokurtic signals and negative
for sub-Gaussian or platykurtic signals.

According to the properties of the kurtosis analyzed
in Ref. [6], the kurtosis of the combined noise is deter-
mined by the dominating noise term.

In analogy to Eq. (4), we estimate the kurtosis of
an M? sample random signal when only one realization
is available by

x(m) = oz llnld = 3oz ImlBR, 9)

where || - ||, denotes the I, norm.
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3. A MIXED NORM RESTORATION FOR
MULTICHANNEL IMAGES

As pointed out, under sub-Gaussian noise conditions
the LMF outperforms the LMS. When the LMF and
the LMS are combined to utilize the advantages of both
of them, and the smoothing functional is incorporated
to avoid some of the difficulties caused by the ill-posed
nature of the degradation operator, the ith channel
mixed norm smoothing functional can be written as

M=) = Ji(z)+o(@)|Cizll3
= (1 -7@)ly: - Hizl}
+ @)y — Hizll§ + os(2)||Cizll3, (6)
where
C; = [Ci1,Ciz, -+, Cinls

where Ji(z) represents the ith channel mixed norm
functional. Cj; represents the multichannel high pass
filter of size M2 x M?, o;(z) the ith channel regu-
larization parameter, and -;(z) the ith channel mixed
norm parameter, respectively. With C;;, smoothness
within each channel is imposed, while with C;; (3 # j),
smoothness between channels is imposed. In Eq. (6),
it is desired that the LMF term dominates the mixed
norm functional (v;(z) ~ 1) if the ith channel noise
is sub-Gaussian, while the LMS term dominates the
mixed norm functional (y;(z) ~ 0) if the ith channel
noise is Gaussian or super-Gaussian. The regulariza-
tion parameter o;(z), represents the trade-off between
the mixed norm functional and the smoothing func-
tional of the ith channel image. Then a solution is
obtained by minimizing the multichannel mixed norm
smoothing functional

N N
M(z) =) Mi(a) = Y _(Ji(a) + as(@)|Cizll}). (7)
i=1

i=1

The two parameters can be expressed as functions
of the original image. However, since the original image
is not available, the information about the original im-
age can be obtained from the partially restored image
when an iterative approach is implemented. Following
the steps as in Ref. [5, 6], each functional becomes
convex when v;(z) and a;(z) are chosen as

_ __exp(=cx(m))
M) = o (m))’ ®
and
ai(it) — (1 - 'Yi(-’ll))”yi e H,:L‘H% +’7¢($)llyi _ Hﬂ:“i

L —||Cixl|3 ’
9



where A and c are positive scalars, 2 > ||Cjz||} for
convexity, and }|z||3 = ||y||3 > ||C;z|{§ when C is nor-
malized such that gp.,(CY C;) = 1.

We propose to use a steepest descent algorithm for
obtaining a solution to the minimization problem of

Eq. (7). The gradient of M(z) with respect to z is
equal to
N N
VeM(z) = V.3 Miz) =) V.Mi(z)
i=1 =1
N
= Y [(1 = (=) HF (y; — Hiz)
=1
+27i(x) Py(z)(y: — Hiz)
—a;(2)CT Cyz] = 0, (10)

where P;(z) represents a diagonal matrix with diagonal
elements P;(z)(4, 7} = (3:(3) — (H;z)(5))2.

With the error residual in Eq. (10), an iteration
results in

N .
o+ B )_[(1 = vi(m)) HY (y: ~ Hizy)

i=1
+27; (zx ) HT Pi(zx) (yi — Hizi)
—ai (1) CF Cizy), (1)

T+l =

where [ is the relaxation parameter to control the con-
vergence as well as the convergence rate.

For two consecutive iteration steps, Eq. {11) can be
rewritten as

eyl — Tk = (Tp — Br-1)
N
+8>_[-HT Hi(zx — wr1)
=

—H[ (Fi(zi) — Fim1(z4-1))

+HT H(Gi(zx) — Gi(zk-1))

+2H] (Ki(zx) — Ki(zk-1))

—2HT(Li(zx) ~ Li(zx-1))

—CTCi(Qi(zx) — Qi(mr-1))],
(12)

where Fi(zi) = %i(zx) v, Gi(zi) = vil@e) 2, Ki(zk)

=~yu{zx ) Pi(2n)yi, Li(zr) = iy Pz ) Hizr, and Q,{zx)

= a;{(zk)zr. These nonlinear factors are linearized as

Fi(z) = Fi(zr-1) =
Gi(zr) — Gi(zr-1)
Ki(zi) ~ Ki(zk-1)
Li(z) — Li(zr-1)
Qi(zi) — Qi(wr-1)

Jr @k — Tr-1),
Jo, (zx — Tx-1),
Jx (@ — Tp—1),
Jr.(zx — T -1),
Jo.(zx — zk-1), (13)

Pl

Q

R

Q
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where Jr, (zx), Jo,(@x)s Tk, (@k), Jr.(@r), and Jg, (zx)
are the Jacobian matrices of the ith channel. Following
similar steps as in [6] and by using Eq. (13), Eq. (12)
can be rewritten as

N
Thir =k = [[= B Ai(@e)l(es —zimr),  (14)

i=1

Ai(:z;k) = (1 - 7i(wk))H?Hi + 6’)’1,($k)H3‘P,(:I/‘;,)HL +

a;(zx)CTC;. Since A;(zy) is positive definite matrix,

the sufficient condition for convergence becomes
2

N- O'mam(Ai(mk)) ’

where 0., (Z) represents the maximum singular value

of the matrix Z.

0<f< (15)

4. EXPERIMENTAL RESULTS

The proposed multichannel regularized mixed norm restora

tion algorithm was tested with a noisy blurred three
channpel true color image. The point spread function
of the blurring system within- and between- channel is
Gaussian with support region 7 and variance 5. For
the within-channel PSF h;;(m,n), 3_,. 3., hii(m,n)
= 0.8, while for between-channel PSF k; ;(m,n), 2,
2, hij(m,n) = 0.1. The three dimensional Lapla-
cian high pass filter was used for C, and the criterion
ka1 — zili?/lzsl? < 1077 was used for terminating
the iteration.

The contaminating noises are 20 dB uniform noise
for the red channel, 20 dB Laplacian noise for the green
channel, and 20 dB Gaussian noise for the blue channel.
The noisy blurred R channel image is shown in Fig.
1. The proposed algorithm is compared with the LMS
multichannel restoration algorithm, as shown in Table
1.

AsNR R G B
Channpel | channel | channel
proposed 2.91 2.41 1.95
algorithm (dB) (dB) (dB)
LMS 2.52 2.35 1.96
algorithm (dB) (dB) (dB)

Table 1: Performance comparison

The corresponding restored R channel image by the
proposed algorithm is shown in Fig. 2 with ¢ =1 and
A=1inEq. (8), and 7! = 2{|yli3.

As mentioned, the proposed multichannel mixed
norm approach does not require any information about



the noise distribution, the power of the noise, and the
original image. The proposed algorithm is capable of
controlling the relative importance of the LMS and
LMF, and estimating the smoothing functional from
the partially restored image. Fig. 3 shows the val-
ues of the mixed norm parameter as function of itera-
tion number. The parameter yg(zj) for the red chan-
nel contaminated by uniform noise (sub-Gaussian) is
close to 1, ¥g(zx) for the green channel contaminated
by Laplacian noise (super-Gaussian) is close to 0, and
vg(zx) for the blue channel contaminated by Gaussian
noise is close to 0.5. In Fig. 4, the values of the reg-
ularization parameter of each channel as functions of
the iteration number are shown.

5. CONCLUSIONS

In this paper, we propose a multichannel regularized
mixed norm image restoration algorithm. The pro-
posed multichannel mixed norm smoothing functional
to be minimized is formulated to have a global mini-
mizer with the proper choice of the multichannel mixed
norm and the regularization parameters, resulting in
better performance compared with the single restora-
tion approach and the least mean squared approach.
The novelty of this paper is that with the proposed
algorithm no knowledge of the noise distributions is re-
quired, and the relative contribution of the LMS and
LMF approaches is adjusted based on the partially re-

stored image. Experimental result shows the capability °

of the proposed approach.
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Figure 1: Noisy blurred Figure 2: Restored image
image ; R channel, 20 dB by proposed algorithm ; R
uniform noise channel

Figure 3: Values of y(z) as function of iteration number
for each channels

R

Figure 4: Values of a(z) as function of iteration number
for each channels



