• Title/Summary/Keyword: Regression Study

Search Result 28,750, Processing Time 0.047 seconds

Performance study of propensity score methods against regression with covariate adjustment

  • Park, Jincheol
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.217-227
    • /
    • 2015
  • In observational study, handling confounders is a primary issue in measuring treatment effect of interest. Historically, a regression with covariate adjustment (covariate-adjusted regression) has been the typical approach to estimate treatment effect incorporating potential confounders into model. However, ever since the introduction of the propensity score, covariate-adjusted regression has been gradually replaced in medical literatures with various balancing methods based on propensity score. On the other hand, there is only a paucity of researches assessing propensity score methods compared with the covariate-adjusted regression. This paper examined the performance of propensity score methods in estimating risk difference and compare their performance with the covariate-adjusted regression by a Monte Carlo study. The study demonstrated in general the covariate-adjusted regression with variable selection procedure outperformed propensity-score-based methods in terms both of bias and MSE, suggesting that the classical regression method needs to be considered, rather than the propensity score methods, if a performance is a primary concern.

Interval Regression Models Using Variable Selection

  • Choi Seung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.1
    • /
    • pp.125-134
    • /
    • 2006
  • This study confirms that the regression model of endpoint of interval outputs is not identical with that of the other endpoint of interval outputs in interval regression models proposed by Tanaka et al. (1987) and constructs interval regression models using the best regression model given by variable selection. Also, this paper suggests a method to minimize the sum of lengths of a symmetric difference among observed and predicted interval outputs in order to estimate interval regression coefficients in the proposed model. Some examples show that the interval regression model proposed in this study is more accuracy than that introduced by Inuiguchi et al. (2001).

Axial load prediction in double-skinned profiled steel composite walls using machine learning

  • G., Muthumari G;P. Vincent
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.739-754
    • /
    • 2024
  • This study presents an innovative AI-driven approach to assess the ultimate axial load in Double-Skinned Profiled Steel sheet Composite Walls (DPSCWs). Utilizing a dataset of 80 entries, seven input parameters were employed, and various AI techniques, including Linear Regression, Polynomial Regression, Support Vector Regression, Decision Tree Regression, Decision Tree with AdaBoost Regression, Random Forest Regression, Gradient Boost Regression Tree, Elastic Net Regression, Ridge Regression, and LASSO Regression, were evaluated. Decision Tree Regression and Random Forest Regression emerged as the most accurate models. The top three performing models were integrated into a hybrid approach, excelling in accurately estimating DPSCWs' ultimate axial load. This adaptable hybrid model outperforms traditional methods, reducing errors in complex scenarios. The validated Artificial Neural Network (ANN) model showcases less than 1% error, enhancing reliability. Correlation analysis highlights robust predictions, emphasizing the importance of steel sheet thickness. The study contributes insights for predicting DPSCW strength in civil engineering, suggesting optimization and database expansion. The research advances precise load capacity estimation, empowering engineers to enhance construction safety and explore further machine learning applications in structural engineering.

A Study on the Several Robust Regression Estimators

  • Kim, Jee-Yun;Roh, Kyung-Mi;Hwang, Jin-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.307-316
    • /
    • 2004
  • Principal Component Regression(PCR) and Partial Least Squares Regression(PLSR) are the two most popular regression techniques in chemometrics. In the field of chemometrics usually the number of regressor variables greatly exceeds the number of observation. So we have to reduce the number of regressors to avoid the identifiability problem. In this paper we compare PCR and PLSR techniques combined with various robust regression methods including regression depth estimation. We compare the efficiency, goodness-of-fit and robustness of each estimators under several contamination schemes.

  • PDF

A comparative study of the Gini coefficient estimators based on the regression approach

  • Mirzaei, Shahryar;Borzadaran, Gholam Reza Mohtashami;Amini, Mohammad;Jabbari, Hadi
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.4
    • /
    • pp.339-351
    • /
    • 2017
  • Resampling approaches were the first techniques employed to compute a variance for the Gini coefficient; however, many authors have shown that an analysis of the Gini coefficient and its corresponding variance can be obtained from a regression model. Despite the simplicity of the regression approach method to compute a standard error for the Gini coefficient, the use of the proposed regression model has been challenging in economics. Therefore in this paper, we focus on a comparative study among the regression approach and resampling techniques. The regression method is shown to overestimate the standard error of the Gini index. The simulations show that the Gini estimator based on the modified regression model is also consistent and asymptotically normal with less divergence from normal distribution than other resampling techniques.

ALC(Autoclaved Lightweight Concrete) Hardness Prediction Research By Multiple Regression Analysis (다중회귀분석을 이용한 ALC 경도예측에 관한 연구)

  • Kim, Gwang-Su;Baek, Seung-Hun
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.04a
    • /
    • pp.117-137
    • /
    • 2012
  • In the ALC(Autoclaved lightweight concrete) manufacturing process, if the pre-cured semi-cake is removed after proper time is passed, it will be hard to retain the moisture and be easily cracked. Therefore, in this research, we took the research by multiple regression analysis to find relationship between variables for the prediction the hardness that is the control standard of the removal time. We study the relationship between Independent variables such as the V/T(Vibration Time), V/T movement, expansion height, curing time, placing temperature, Rising and C/S ratio and the Dependent variables, the hardness by multiple regression analysis. In this study, first, we calculated regression equation by the regression analysis, then we tried phased regression analysis, best subset regression analysis and residual analysis. At last, we could verify curing time, placing temperature, Rising and C/S ratio influence to the hardness by the estimated regression equation.

  • PDF

Modeling clustered count data with discrete weibull regression model

  • Yoo, Hanna
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.4
    • /
    • pp.413-420
    • /
    • 2022
  • In this study we adapt discrete weibull regression model for clustered count data. Discrete weibull regression model has an attractive feature that it can handle both under and over dispersion data. We analyzed the eighth Korean National Health and Nutrition Examination Survey (KNHANES VIII) from 2019 to assess the factors influencing the 1 month outpatient stay in 17 different regions. We compared the results using clustered discrete Weibull regression model with those of Poisson, negative binomial, generalized Poisson and Conway-maxwell Poisson regression models, which are widely used in count data analyses. The results show that the clustered discrete Weibull regression model using random intercept model gives the best fit. Simulation study is also held to investigate the performance of the clustered discrete weibull model under various dispersion setting and zero inflated probabilities. In this paper it is shown that using a random effect with discrete Weibull regression can flexibly model count data with various dispersion without the risk of making wrong assumptions about the data dispersion.

A Study on the Local Regression Rate of Solid Fuel in Hybrid Rocket (하이브리드 로켓에서의 고체연료의 국부 후퇴율에 관한 연구)

  • Kim, Soojong;Lee, Jungpyo;Kim, Gihun;Cho, Jungtae;Kim, Hakchul;Woo, Kyoungjin;Moon, Heejang;Sung, Hong-Gye;Kim, Jin-Kon
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.4
    • /
    • pp.1-6
    • /
    • 2008
  • In generally, the regression rate was expressed with average value and oxidizer mass flux in hybrid propulsion system. This can not represent the local value of regression rate along with oxidizer flow direction. In this study, experimental studies were performed with Separation method and Cutting method for measure local regression rate. In axial injection, the local regression rate decreases rapidly with axial location near entrance and increases with axial direction from the leading edge and the empirical formula for local regression rate with function of oxidizer mass flux and location was derived. Swirl injection regression rate has higher value at the leading edge of the fuel and comparatively uniform regression rate at the downstream. Overall regression rate of swirl injection is higher increased about 54 % than regression rate of axial injection.

  • PDF

Machine learning-based regression analysis for estimating Cerchar abrasivity index

  • Kwak, No-Sang;Ko, Tae Young
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.219-228
    • /
    • 2022
  • The most widely used parameter to represent rock abrasiveness is the Cerchar abrasivity index (CAI). The CAI value can be applied to predict wear in TBM cutters. It has been extensively demonstrated that the CAI is affected significantly by cementation degree, strength, and amount of abrasive minerals, i.e., the quartz content or equivalent quartz content in rocks. The relationship between the properties of rocks and the CAI is investigated in this study. A database comprising 223 observations that includes rock types, uniaxial compressive strengths, Brazilian tensile strengths, equivalent quartz contents, quartz contents, brittleness indices, and CAIs is constructed. A linear model is developed by selecting independent variables while considering multicollinearity after performing multiple regression analyses. Machine learning-based regression methods including support vector regression, regression tree regression, k-nearest neighbors regression, random forest regression, and artificial neural network regression are used in addition to multiple linear regression. The results of the random forest regression model show that it yields the best prediction performance.

A Study on Change of Logistics in the region of Seoul, Incheon, Kyunggi (물류예측모형에 관한 연구 -수도권 물동량 예측을 중심으로-)

  • Roh Kyung-Ho
    • Management & Information Systems Review
    • /
    • v.7
    • /
    • pp.427-450
    • /
    • 2001
  • This research suggests the estimation methodology of Logistics. This paper elucidates the main problems associated with estimation in the regression model. We review the methods for estimating the parameters in the model and introduce a modified procedure in which all models are fitted and combined to construct a combination of estimates. The resulting estimators are found to be as efficient as the maximum likelihood (ML) estimators in various cases. Our method requires more computations but has an advantage for large data sets. Also, it enables to detect particular features in the data structure. Examples of real data are used to illustrate the properties of the estimators. The backgrounds of estimation of logistic regression model is the increasing logistic environment importance today. In the first phase, we conduct an exploratory study to discuss 9 independent variables. In the second phase, we try to find the fittest logistic regression model. In the third phase, we calculate the logistic estimation using logistic regression model. The parameters of logistic regression model were estimated using ordinary least squares regression. The standard assumptions of OLS estimation were tested. The calculated value of the F-statistics for the logistic regression model is significant at the 5% level. The logistic regression model also explains a significant amount of variance in the dependent variable. The parameter estimates of the logistic regression model with t-statistics in parentheses are presented in Table. The object of this paper is to find the best logistic regression model to estimate the comparative accurate logistics.

  • PDF