DOI QR코드

DOI QR Code

Machine learning-based regression analysis for estimating Cerchar abrasivity index

  • Kwak, No-Sang (SK C&C Data Platform Group) ;
  • Ko, Tae Young (Department of Energy and Resources Engineering, Kangwon National University)
  • Received : 2021.12.05
  • Accepted : 2022.03.09
  • Published : 2022.05.10

Abstract

The most widely used parameter to represent rock abrasiveness is the Cerchar abrasivity index (CAI). The CAI value can be applied to predict wear in TBM cutters. It has been extensively demonstrated that the CAI is affected significantly by cementation degree, strength, and amount of abrasive minerals, i.e., the quartz content or equivalent quartz content in rocks. The relationship between the properties of rocks and the CAI is investigated in this study. A database comprising 223 observations that includes rock types, uniaxial compressive strengths, Brazilian tensile strengths, equivalent quartz contents, quartz contents, brittleness indices, and CAIs is constructed. A linear model is developed by selecting independent variables while considering multicollinearity after performing multiple regression analyses. Machine learning-based regression methods including support vector regression, regression tree regression, k-nearest neighbors regression, random forest regression, and artificial neural network regression are used in addition to multiple linear regression. The results of the random forest regression model show that it yields the best prediction performance.

Keywords

Acknowledgement

This study was supported by 2020 Research Grant from Kangwon National University.

References

  1. Al-Ameen, S.I., and Waller, M.D. (1994), "The influence of rock strength and abrasive mineral content on the Cerchar Abrasive Index", Eng. Geol., 36(3-4), 293-301. https://doi.org/10.1016/0013-7952(94)90010-8.
  2. Altindag, R., Sengun, N., Sarac, S., Mutluturk, M. and Guney, A. (2010), "Evaluating the relations between brittleness and Cerchar abrasion index of rocks", Proceedings of the Regional Symposium of the International Society for Rock Mechanics, EUROCK 2009, Dubrovnik, Cavtat, Croatia.
  3. Ansari, M., Hosseini, M. and Taleb Beydokhti, A.R. (2020), "A correlation for estimating LCPC abrasivity coefficient using rock properties", J. Min. Environ., 11(3), 799-808. https://doi.org/10.22044/jme.2020.9520.1863.
  4. Burkhardt, M, Kim, E. and Nelson, P.P. (2018), "EMI database analysis focusing on relationship between density and mechanical properties of sedimentary rocks", Geomech. Eng., 14(5), 491-498. https://doi.org/10.12989/gae.2018.14.5.491.
  5. Chang, S.H., Lee, C., Kang, T.H., Ha, T. and Choi, S.W. (2017), "Effect of hardfacing on wear reduction of pick cutters under mixed rock conditions", Geomech. Eng., 13(1), 141-159. https://doi.org/10.12989/gae.2017.13.1.141.
  6. Craney, T.A. and Surles, J.G. (2002), "Model-dependent variance inflation factor cutoff values", Qual. Eng., 14(3), 391-403. https://doi.org/10.1081/QEN-120001878.
  7. Drucker, H., Burges, C.J., Kaufman, L., Smola, A. and Vapnik, V. (1997), "Support vector regression machine", Proceedings of the 1996 Conference Advances in Neural Information Processing Systems 9.
  8. Erarslan, N. (2019), "Assessment of Cerchar abrasivity test in anisotropic rocks", Geomech. Eng., 17(6), 527-534. https://doi.org/10.12989/gae.2019.17.6.527.
  9. Frenzel, C. (2011), "Disc cutter wear phenomenology and their implications on disc cutter consumption for TBM", Proceedings of the 45th US Rock Mechanics/ Geomechanics Symposium, San Francisco, U.S.A. June.
  10. Gehring, K. (1995), "Leistungs- und Verschleissprognosen im maschinellen", Tunnelbau Felsbau, 13(6), 439-448.
  11. He, J., Li, S., Li, X., Wang, X. and Guo, J. (2016), "Study on the correlations between abrasiveness and mechanical properties of rocks combining with the microstructure characteristic", Rock Mech. Rock Eng., 49. 2945-2951. https://doi.org/10.1007/s00603-015-0862-3.
  12. Kahraman, S., Fener, M., Kasling, H. and Thuro, K. (2018), "Investigating the effect of strength on the LCPC abrasivity of igneous rocks", Geomech. Eng., 15(2), 805-810. https://doi.org/10.12989/gae.2018.15.2.805.
  13. Ko, T.Y., Kim, T.K., Son, Y. and Jeon, S. (2016), "Effect of geomechanical properties on Cerchar Abrasivity Index (CAI) and its application to TBM tunnelling", Tunn. Undergr. Sp. Tech., 57, 99-111. https://doi.org/10.1016/j.tust.2016.02.006.
  14. Ko, T.Y. and Lee, S.S. (2020), "Effect of rock abrasiveness on wear of shield tunnelling in Bukit Timah granite", Appl. Sci., 10(9), 3231, https://doi.org/10.3390/app10093231.
  15. Kong, F., Xue, Y., Qiu, D., Li, Z., Chen, Q. and Song, Q. (2021), "Impact of grain size or anisotropy on correlations between rock tensile strength and some rock index properties", Geomech. Eng., 27(2), 131-150. https://doi.org/10.12989/gae.2021.27.2.131.
  16. Liu, Q., Liu, J., Pan, Y., Zhang, X., Peng, X., Gong, Q. and Du, L. (2017), "A wear rule and cutter life prediction model of a 20-in. TBM cutter for granite: A case study of a water conveyance tunnel in China", Rock Mech. Rock Eng., 50, 1303-1320. https://doi.org/10.1007/s00603-017-1176-4.
  17. Majeed, Y. and Abu Bakar, M.Z. (2018), "A study to correlate LCPC rock abrasivity test results with petrographic and geomechanical rock properties", Q. J. Eng. Geol., 51(3), 365-378. http://doi.org/10.1144/qjegh2017-112.
  18. Meng, F., Wong, L.N.Y. and Zhou, H. (2021), "Rock brittleness indices and their applications to different fields of rock engineering: A review", J. Rock Mech. Geotech. Eng., 13, 221-247. https://doi.org/10.1016/j.jrmge.2020.06.008.
  19. Moradizadeh, M., Cheshomi, A., Ghafoori, M. and TrighAzali, S. (2016), "Correlation of equivalent quartz content, Slake durability index and Is50 with Cerchar abrasiveness index for different types of rock", Int. J. Rock Mech. Min. Sci., 86, 42-47. https://doi.org/10.1016/j.ijrmms.2016.04.003.
  20. Ozdogan, M.V., Deliormanli, A.H. and Yenice, H. (2018), "The correlations between the Cerchar abrasivity index and the geomechanical properties of building stones", Arab. J. Geosci., 11, 604. https://doi.org/10.1007/s12517-018-3958-8.
  21. Plinninger, R., Kasling, H., Thuro, K. and Spaun, G. (2003), "Testing conditions and geomechanical properties influencing the CERCHAR abrasiveness index (CAI) value", Int. J. Rock Mech. Min. Sci., 40, 259-263. https://doi.org/10.1016/S1365-1609(02)00140-5.
  22. Rostami, J. (1997), "Development of a Force Estimation Model for Rock Fragmentation with Disc Cutters through Theoretical Modeling and Physical Measurement of Crushed Zone Pressure", Ph.D. Thesis, Colorado School of Mines, Golden, Colorado, USA
  23. Rostami, J., Ghasemi, A., Gharahbagh, E.A., Dogruoz, C. and Dahl, F. (2014), "Study of dominant factors affecting Cerchar abrasivity index", Rock Mech. Rock Eng., 47(5), 1905-1919. https://doi.org/10.1007/s00603-013-0487-3.
  24. Rostami, J., Ozdemir, L., Bruland, A. and Daul, F. (2005), "Review of issues related to Cerchar abrasivity testing and their implications on investigations and cutter cost estimates", Proceedings of the Rapid Excavation and Tunneling Conference (RETC), Seattle, U.S.A.
  25. Saeidi, O., Elyasi, A. and Torabi, S.R. (2015), "Wear assessment of the WC/Co cemented carbidetricone drillbits in an open pit mine", Geomech. Eng., 8(4), 477-493. https://doi.org/10.12989/gae.2015.8.4.477.
  26. Tripathy, A., Singh, T.N. and Kundu, J. (2015), "Prediction of abrasiveness index of some Indian rocks using soft computing methods", Measurement, 68, 302-309. https://doi.org/10.1016/j.measurement.2015.03.009
  27. Undul, O. and Er, S. (2017), "Investigating the effects of micro-texture and geo-mechanical properties on the abrasiveness of volcanic rocks", Eng. Geol., 229, 293-301. http://doi.org/10.1016/j.enggeo.2017.09.022.
  28. West, G. (1989), "Rock abrasiveness testing for tunnelling", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 26(2), 151-160. https://doi.org/10.1016/0148-9062(89)90003-X.
  29. Yarali, O. (2017), "Investigation into relationships between Cerchar hardness index and some mechanical properties of coal measure rocks", Geotech. Geol. Eng., 35, 1605-1614. https://doi.org/10.1007/s10706-017-0195-y.