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Abstract

Resampling approaches were the first techniques employed to compute a variance for the Gini coefficient;
however, many authors have shown that an analysis of the Gini coefficient and its corresponding variance can
be obtained from a regression model. Despite the simplicity of the regression approach method to compute a
standard error for the Gini coefficient, the use of the proposed regression model has been challenging in eco-
nomics. Therefore in this paper, we focus on a comparative study among the regression approach and resampling
techniques. The regression method is shown to overestimate the standard error of the Gini index. The simulations
show that the Gini estimator based on the modified regression model is also consistent and asymptotically normal
with less divergence from normal distribution than other resampling techniques.

Keywords: bootstrap technique, Gini coefficient, jackknife method, Lorenz curve, modified regres-
sion model, resampling techniques

1. Introduction

Measures of inequality are used to analyzing incomes, welfare, and poverty issues. They can also
be helpful to measure the level of social stratification and polarization. Among many inequality
measures, the Gini index is of the most widely known measures of income inequality due to its easy
interpretation.

The Gini coeflicient is the popular measure of income inequality; however, it is usually reported
without any information about variance and ideally, with a standard error (SE). The reason for this is
that most of the formulations of its proposed SE are mathematically complex or require considerable
numerical computation.

Different methods to compute the SE of Gini index have been shown in various research on statis-
tics and economics. Some related references are Woo and Yoon (2001), Xu (2007), Davidson (2009),
Langel and Tillé (2013), and Yitzhaki and Schechtman (2013). Many authors have proposed using
resampling approaches such as jackknife and bootstrap techniques to compute variance for the Gini
estimator (Kang and Cho, 1996; Mills and Zandvakili, 1997; Moran, 2006; Palmitesta and Provasi,
2006; Yitzhaki, 1991).

Some authors have demonstrated that estimates of the Gini coefficient can be obtained from ordi-
nary linear regression based on data and their ranks, thereby providing an exact analytic SE. Lerman
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and Yitzhaki (1984) derived a convenient method to calculate the Gini coefficient, using the covari-
ance between data and corresponding ranks. In this way, Shalit (1985) proposed a regression model
based on a ranked variable for the set of natural numbers to compute the Gini index. Ogwang (2000)
provided a method to compute the Gini index by an ordinary least square (OLS) regression, as well as
discussed how to use the regression to simplify the computation of the jackknife SE. Giles (2004) later
showed that the OLS SE from this regression could be used directly in order to compute the SE of the
Gini index. Modarres and Gastwirth (2006) with simulations showed that the regression method over-
estimates the SE of the Gini estimator. They noted that the defect is due to the dependency between
error terms in the proposed regression model. They also recommend complex or computationally
intensive methods. However, Ogwang (2006) and Giles (2006) disagreed with this suggestion.

In this paper, according to simplicity of the regression approach method, we evaluate and compare
this way with other resampling techniques. In this regard, we examine some special situations where
the underlying distribution follows log-logistic (LL) and exponential (Exp) distributions as particular
cases of generalized Beta II distribution (McDonald, 1984). In the next section, we introduce the con-
cept of the Gini index which is discussed the income inequality. Section 3 then deals with resampling
techniques such as bootstrap and jackknife, to measure the SE and confidence interval of the Gini es-
timator. In Section 4, with discussing shortcoming of the regression approach, we study this method
for the variance estimation of the Gini estimator. Section 5 provides simulation evidence that proves
the main conclusions of the paper and compares the some inferential statistics of Gini estimators such
as consistency, divergence from normal distribution and asymptotic properties among the methods.
Some graphical comparisons have also been done. Section 6 illustrated the results of the paper for
real data on income inequality in Britain between 1994/1995. Conclusions are left for the last section.

2. The Gini coefficient

The most well-known member of the income inequality family is the Gini coefficient. It is widely
used to measure income inequality because of its clear economic interpretation. This measure can be
defined in various ways (Xu, 2003; Yitzhaki, 1998).

The best known definition of the Gini index of inequality is as twice the area between the 45°-line
(equality line) and the Lorenz curve, as demonstrated in Figure 1. Therefore, it can be expressed as

1
G = 2f0 (p = L(p)dp, 2.1)

such that p = F(x) is a cumulative distribution function (cdf) of income and L(p) is the Lorenz func-
tion given by (1/w) Jg)p F~'(t)dt (Gastwirth, 1971), where u = E(X) > 0 and F~!(p) = inf{x|F(x) >
p;p €[0,1]}.

The Gini index takes values between 0 and 1. The value 0 corresponds to complete equality and 1
corresponds to complete inequality. This index is also defined as

A
G=—,
2u
where A = fooo fom |x — yldxdy is the population mean difference.
Using Expression (2.1), integration by parts and applying a change of variable p = F(x), it can be
found that (Xu, 2003):

1
G=2 [ f XFOdF(x) — ‘—‘}. 2.2)
M [Jo 2
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Figure 1: The area between the equality-line and the Lorenz curve.

This formula clearly shows an interpretation of the Gini coefficient in terms of covariance via
2
G = —Cov(X, F(X)). (2.3)
U

Suppose that an identical independent distribution (iid) sample of size n is drawn randomly from the
population, and let its empirical distribution function denoted as £,. It can be noticed that using (2.2),
the natural plug in estimator of G by estimating F with £, defiend as

A

~ 20 A .
Gzzr[j‘xFAxMFAx%—E.
[ 2

0

In the context of discrete income distribution, Xu (2003) showed that the Gini index can be esti-
mated by

6 2LV n+d
TRy n

k)

where 0 < Y < --- <Y, are the ordered income data.

Davidson (2009) proposed an approximate expression for the bias of G, from which he subse-
quently derived the following bias-corrected estimator of the Gini coefficient, denoted G, which is
given by:
nooA

G= G, (2.4)

n-1

while the estimator is still biased but its bias is of order n~!. Sometimes using this estimator is recom-
mended because the properly bias-corrected estimator is not only even easier to compute rather than
the other estimators, but also its bias converges to 0 as n — oo faster.

3. Resampling techniques

Different methods with complicated formula to variance estimation of the Gini index have prompted
significant research in statistics and economics. Most of the formulations of the variance for the
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Gini estimator proposed in the literature are mathematically complex or require considerable numer-
ical computation. To avoid these mathematical difficulties, various authors have proposed using the
resampling techniques such as jackknife and bootstrap methods as follows.

3.1. The jackknife method

The jackknife provides a general purpose approach to estimating the bias and variance of an estimator.
The jackknife is particularly useful when standard methods for computing bias and variance cannot
be applied or are difficult to apply. Suppose that G is an estimator of the Gini coefficient (G) based
on sample of iid random variables X, ..., X,. Let G be the Gini estimator for the subsample of the
initial sample where the i observation has been deleted, then the jackknife estimator to measure the

Gini coefficient based on the n values of G® is defined as:

é,:é+”_lzxé—6@y 3.1)

and

bl = p hxé—@ﬂ, (3.2)

which is the jackknife bias estimator (Yitzhaki, 1991). It follows that G; will be asymptotically
unbiased (Jiang, 2010).

The jackknife method can also be used to estimate the SE of the Gini estimator. This was first
noted by Yitzhaki (1991), whose SE estimate has the following expression:

&= J 13 (e0-c.)’ (33)

where

3.2. The Bootstrap method

The bootstrap method is an alternative approach to the variance estimation of Gini estimator. This
technique is relatively straightforward, yet analytically powerful. Mathematical justifications can be
quite sophisticated, the bootstrap method requires no theoretical calculations, applies identically to
any income inequality measure, and is available no matter how mathematically complicated the pa-
rameter estimate or its asymptotic SE may be (Mills and Zandvakili, 1997). The bootstrap procedure
is:

e Given a sample X, ..., X,, of size n and an estimator G.
e Draw B bootstrap samples of size n with replacement from Xy, ..., X,.

e Calculate the estimator for each one of them and obtain B values of the estimator, denoted by
1202 Yp
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Now, these values are used in order to estimate the variance of the original estimator. Namely, the
sample variance of G7, ..., G} is used as the bootstrap variance estimator of the variance of the origi-
nal statistic G. The bootstrap SE of G can then be estimated as:

B
O Boot = ﬁ; (GAZ - G*)z, (3.4)

where

=

S
G=2>0,
b=1

4. The regression method

The regression approach is the simplest way of computing a SE for the Gini coefficient. The computa-
tional difficulties or mathematical complexities associated with conventional formulas to compute the
variance of the Gini coefficient make the use of simpler regression-based approach seems attractive.
At first Lerman and Yitzhaki (1984) stated the Gini coefficient based on a covariance between the
variable and its rank. Shalit (1985) proposed a regression model to compute the Gini index in the
following form:

viza+Bi+&, i=1,2,...,n, 4.1)
suchthat0 <y; <y, <--- <y, and &1, &, ..., &, are errors with zero mean and homogenous variance
0. He calculated the Gini estimator based on the estimated slope of this regression model as follows:

L (nP =1\ (B
G = (” )([—3) 4.2)
6n y

where j is the sample mean, /3 is the OLS estimator of 3. To see an alternative regression interpretation
of the Gini index, Ogwang (2000) also showed that G can be written as:

L 20 1
G==-" 43)
n n

such that § = 2y Byil 2y vi» is the weighted least squares estimator of 6 in the following regression
model:

iVyi=0~yi+v, i=12,...,n, 4.4)

where v, v,,...,v, are errors with mean zero and homogenous variance o2. Davidson (2009) pro-
posed regression modified model in (4.4) as:

n

(21_1—1)\/£=9*\/ﬁ+§,», i=1,2,....n (4.5)

In this model, the Gini coefficient has an estimator of the slope of the regression model directly
obtained and the SE of the Gini estimate can be computed.
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Figure 2: The dependency between ordered incomes under exponential distribution.

4.1. Shortcomings of the regression model approach

The regression model to estimating the SE of the Gini estimator cannot produce reliable results be-
cause it does not account for potential shortcomings introduced in the following:

The regression model takes no account of the sampling design. It is used only for a random sam-
pling technique.

The independent variable in ordinary linear regression model is measured with no error; however,
this model assumes that the independent variable is random.

The normality of the error terms may be not satisfied and it should be tested.

The relationship between ordered income and its rank is convex as demonstrated in Figure 2. There-
fore, the error terms are dependent because the variance-covariance matrix of the errors is not di-
agonal. It has nonnegative element o7;;/n , such that

pi(l = pj) o
gii=———"", lS], 17‘]:1,2"”7’1’
TG &)
and

oij=0j, i>],

where ¢, is the p;h population quantile and f(£),) is the positive and continuous density-quantile
function for 0 < p; < 1 (David and Nagaraja, 2003).

It is important to note that actual data have these defects. Therefore, the method is used even

though the defects are true. We must be cautious when using a regression-based approach to construct
a SE for the Gini coefficient; in addition, tests for the validity of assumptions in the regression model
must be formally conducted.

4.2. Asymptotic behavior based on regression approach

We can suppose that the estimator of Gini coefficient is unbiased and the asymptotic properties can be
concluded if the regression model in (4.5) is true. Based on modified regression model in (4.5), the
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slope estimate of the regression model is equal to the Gini estimator is:

?:1 (% - l)yl‘
Z?:] Yi '

The Gini estimator in (4.6) is the proportion of two functions that are linear combination of order
statistics (L-statistics); therefore, asymptotical normality and consistency can be obtained with the
theory of L-statistics (Sendler, 1979). G is normally distribution based on theory of U-statistics and
under some regularity conditions (Xu, 2007).

G= (4.6)

5. Simulation study

To comparative study of the Gini coefficient estimators based on bootstrap, jackknife and the regres-
sion approach in equation (4.5), we examined a special situation where the underlying distributions
follow generalized Beta IT (GB2) distribution. The most general distribution which has been proposed
for fitting income data is the GB2 introduced in McDonald (1984). Its density is:

axap-]
b B(p, @[ + (x/b)*1"*’

fGBZ(-xla9 b9 P CI) =

with x > 0, a,b > 0 and where B(p, g) is the Beta function given by

I'(p)I'(g) < !
B(p,q) = Tt a) = fo a +t)”+"dt’ p,q > 0.

The GB2 has the advantage that many densities can be obtained as a particular case and therefor con-
stitutes a nice framework for discussion. Because of the complexity of the mathematical expression,
we concentrate on Exp distribution with cdf:

Fx)=1-¢% x>0, 5.1

and LL distribution with cdf:

Fx)=1- x>0, (5.2)

1+ x*
where a > 0, is a shape parameter (a > 2 leads to existence of the second moment of X).

In each stage, the simulations were undertaken by drawing 10,000 independent samples of size
n = 10,20, 50, 100, 500, 1,000 from the underlying distributions.

5.1. Variance inflation of Gini estimator in regression approach

It is important to have a correct method available to compute the SE of the Gini coefficient. Using a
hypothesis test, it is possible when we use the SE of one method; the difference is significant but it
is not when using another method. In Table 1, we write the values of the SE for Gini estimator with
the regression model and other resampling techniques under Exp and LL distributions with parameter
a =5 as a benchmark. From these values, it is clear that the regression method underestimate the true
value of Gini index and also overestimates the SE of the Gini estimator rather than other resampling
techniques.
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Table 1: Comparison the standard errors of Gini estimates

n Exp LL
Boot Jack Reg Boot Jack Reg

10 0.0825 0.0904 0.1478 0.0391 0.0465 0.1867
20 0.0597 0.0636 0.1016 0.0314 0.0363 0.1292
50 0.0385 0.0403 0.0630 0.0225 0.0241 0.0807
100 0.0278 0.0288 0.0443 0.0168 0.0175 0.0568
500 0.0127 0.0128 0.0197 0.0081 0.0081 0.0253
1,000 0.0090 0.0091 0.0139 0.0058 0.0058 0.0178

LL = loglogistic distribution; Exp = exponential distribution; Boot = bootstrap; Jack = jackknife; Reg = regression.
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Figure 3: Comparison of the standard errors under exponential distribution.

Three methods, the bootstrap, jackknife and the regression approach, provide comparable results.
SE estimates using the bootstrap and jackknife are close to the real values, while those of the suggested
regression model are noticeably inflated. The weakness of the regression based approach is essentially
a finite sample matter, and its importance should diminish as n — oco. Figure 3 shows corresponding
results for Exp distribution.

Table 2 reports the bias values, SE and mean square error (MSE) for the Gini estimator with the
regression model underlying the LL distribution with parameter ¢ = 3,10,20. It is clear that the
change of these properties is influenced by the sample size and the values of a.

5.2. Consistency of Gini estimator in regression model

Table 3 presents the values of the MSE for Gini index with regression model underlying Exp and
LL distributions with a = 3 as a benchmark. The results are shown in the following Table obtained
by drawing 10,000 independent samples for the Gini index and n = 10, 20, 50, 100, 500, 1,000. The
simulations show that the Gini coefficient based on parameter estimate in the modified regression
model is consistent.

5.3. Asymptotic behavior

First, in order to see whether the asymptotic normality assumption yields a good approximation, sim-
ulations are undertaken with drawings 10,000 independent samples of size n = 100 for the Gini index
from the Exp distribution, with cdf in (5.1). Using normality tests, it is evident that the consistency of
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Table 2: Summary of regression approach under loglogistic distribution

a n Bias Standard error Mean square error
10 —-0.04496 0.1780 0.0337
20 -0.02211 0.1236 0.0157
3 50 —-0.00986 0.0774 0.0060
100 —-0.00369 0.0545 0.0029
500 -0.00029 0.0243 0.0005
1,000 —-0.00017 0.0172 0.0002
10 -0.01057 0.1902 0.0363
20 —-0.00489 0.1314 0.0173
10 50 —-0.00186 0.0820 0.0067
100 —-0.00065 0.0577 0.0033
500 -0.00013 0.0257 0.0006
1,000 —-0.00006 0.0181 0.0003
10 —-0.00521 0.1911 0.0365
20 -0.00242 0.1320 0.0174
20 50 —-0.00089 0.0823 0.0067
100 —-0.00032 0.0579 0.0033
500 —-0.00007 0.0258 0.0006
1,000 -0.00003 0.0182 0.0003
Table 3: Consistency of Gini estimator in regression model for exponential distribution
n
20 100 500 1,000
MSE Exp 0.0109 0.0019 0.0003 0.0001
LL 0.0157 0.0030 0.0005 0.0002

MSE = mean square error; Exp = exponential distribution; LL = loglogistic distribution.
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Figure 4: Comparison of the empirical distributions of jackknife and regression statistics.

the Gini estimator with the normal distribution is high.

In comparison normality of estimators based on jackknife and the regression approach, Figure
4Ashows the empirical distributions for n = 100 of the statistics Treg = (G = Go) [OReg and Traek =
(G — Go)/Gyack. Here Greg is the reg{ession SE estimator from regression (4.5) and Gjack is the
jackknife SE estimator from (3.3) and Gy is given by (3.1). Note that Gy, the true value of the Gini
index, for Exp distribution is 0.5.

Both of these statistics have distributions that are close to the standard normal distribution, but the
jackknife estimator has better behavior of normality than the regression estimator.
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Figure 6: The divergence from N(0, 1) for jackknife, bootstrap, and regression approach.

5.4. Gini regression estimate deviation from the normal distribution

In this section, we examine the divergence of Gini estimator in regression approach to normal distri-
bution using the Kolmogorov distance under LL distribution with parameter a. The results are shown
in Figure 5, where we show the Kolmogorov distances of sampling indices from a normal distribution
influenced by parameter values of the distribution and sample size values. The concave curves express
that the parameter value has the opposite effect.

Here, we compare the deviation of Gini estimates from normal distribution. Figure 6 explains
divergence from normal distribution for jackknife, bootstrap and the regression approach estimators
under Exp distribution. It is evident that the deviation of these estimates are asymptotically equivalent
(especially for jackknife and bootstrap). It can be seen that the Gini estimate based on the jackknife
method has a good performance in deviation from normal distribution.

5.5. Comparison of confidence intervals

In this section, we proposed three 95% confidence intervals for the Gini estimates of Exp distribution.
Recall that the true value of the Gini index for this distribution is 0.5. The first column of Table 4 uses
SE of the jackknife with N(0, 1) critical values, the second is based on the percentile-t bootstrap confi-
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Table 4: Confidence intervals for Gini estimates of exponential distribution

349

n Jackknife Bootstrap Regression
10 (0.3222, 0.6363) (0.2626, 0.6794) (0.1596, 0.7399)
20 (0.3735, 0.6012) (0.3497, 0.6265) (0.2758, 0.6747)
50 (0.4199, 0.5682) (0.4115, 0.5799) (0.3662, 0.6138)

100 (0.4437, 0.5503) (0.4395, 0.5570) (0.4085, 0.5822)

500 (0.4748, 0.5239) (0.4739, 0.5251) (0.4605, 0.5377)

1,000 (0.4820, 0.5174) (0.4816, 0.5177) (0.4723, 0.5270)

Table 5: Comparison the Gini estimates in Britain in fiscal years 1994-1995

Method G Standard error(G ) Confidence Interval
Bootstrap 0.33185 0.00272 [0.32578, 0.33715]
Jackknife 0.33186 0.00190 [0.32623, 0.33750]
Regression 0.33185 0.00337 [0.32524, 0.33846]

Table 6: Divergence of Gini estimates from N(0, 1) based on fitted distribution

n Jackknife Bootstrap Regression
10 0.2321 0.2716 0.2297
20 0.2061 0.2389 0.1932
50 0.1618 0.1876 0.1809

100 0.1259 0.1372 0.1441

500 0.0612 0.1079 0.1304

1,000 0.0548 0.0663 0.1268

dence interval (Mills and Zandvakili, 1997), the third are confidence intervals based on the regression
model.

It is evident that the asymptotic bootstrap and jackknife intervals are very similar and both are
very much narrower than those computed with the SEs based on regression approach.

6. Empirical illustration

Here, we refer to the real data based on income inequality in Britain on the fiscal years 1994—1995.
Estimation is based on the unit record data used to calculate the official income statistics, derived from
Family Resources Surveys available from the UK Data Service’s web site (https://www.ukdataservice.
ac.uk). We first performed an analysis on a comparison of the SEs and three 95% confidence intervals.
Table 5 provides the corresponding results.

According to probability plots and quantile plots, we fit the GB2 distribution to real data with scale
parameter equal to b = 227.84 and shape parameters equal to a = 2.99, p = 1, and g = 1. This result
has also been reported in Jenkins (2009). The parameters considered are the maximum likelihood
estimates of the GB2 distribution based on incomes. The distribution was well-characterized by a
Fisk distribution with a = 2.99 and b = 227.84. Here, we refer to Monte Carlo samples drawn from a
Fisk distribution as well as performed an analysis on a comparison of the divergence of Gini estimates
from normal distribution by using the Kolmogorov distance. Table 6 summarizes the results for better
interpretation.

Table 7 presents the empirical MSEs of the Gini estimator based on resampling and regression
model. It is clear that all of these methods have asymptotically equal MSE values.

Table 8 reports the relative frequencies of the 95% confidence intervals containing the true value
of the inequality measure (coverage probability) and the sizes of confidence intervals (average size)
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Table 7: MSEs of the Gini estimates based on fitted distribution

MSE
" Jackknife Bootstrap Regression

10 0.007451 0.005592 0.033719

20 0.003862 0.002952 0.015768

50 0.001964 0.001498 0.006093

100 0.001020 0.000861 0.002993

500 0.000257 0.000247 0.000593

1,000 0.000132 0.000133 0.000296

MSE = mean square error.
Table 8: CP and AS of fitted distribution to real data
" Jackknife Bootstrap Regression
CP AS CP AS CP AS

10 0.7971 0.2864 0.7085 0.2358 0.6955 0.6219
20 0.8366 0.2298 0.7683 0.1944 0.7502 0.4804
50 0.8705 0.1655 0.8305 0.1471 0.8043 0.3033
100 0.8916 0.1253 0.8741 0.1158 0.8647 0.2136
500 0.9223 0.0619 09111 0.0605 0.9012 0.0954
1,000 0.9313 0.0451 0.9233 0.0442 0.9189 0.0675

CP = coverage probability; AS = average size.

of 10,000 confidence intervals, for different methods of the fitted distribution to real data.

The results show that the coverage accuracy of the resampling techniques confidence intervals is
reasonably close to the nominal confidence level for a large sample size. As expected, there was no
substantial difference in coverage probability (CP) and in average size (AS) for the two resampling
techniques. The jackknife confidence interval performs best in terms of CP and AS at the cost of
providing larger confidence intervals.

7. Conclusion

The regression approach is the simplest way to estimate the Gini coefficient and its SE; however, this
analysis of the Gini estimator can produce weaker results because it does not account for potential
shortcomings introduced in the proposed regression model. It is important to note that actual data
has defects when this method is used, despite the known shortcomings. The Gini estimator based
on the regression model is consistent and asymptotically normal with less divergence from normal
distribution than other resampling techniques. This method does not require the grouping of individual
data to economize on computations. In addition, the estimator can be analyzed by using standard
statistical software. The weakness of this method decreases as the sample size grows; therefore, we
should be cautious when using regression-based approach to analyze the Gini coefficient in small
samples size.
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