• Title/Summary/Keyword: Region-based reconstruction

Search Result 144, Processing Time 0.027 seconds

Decomposition based on Object of Convex Shapes Using Poisson Equation (포아송 방정식을 이용한 컨벡스 모양의 형태 기반 분할)

  • Kim, Seon-Jong;Kim, Joo-Man
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.137-144
    • /
    • 2014
  • This paper proposes a novel procedure that uses a combination of overlapped basic convex shapes to decompose 2D silhouette image. A basic convex shape is used here as a structuring element to give a meaningful interpretation to 2D images. Poisson equation is utilized to obtain the basic shapes for either the whole image or a partial region or segment of an image. The reconstruction procedure is used to combine the basic convex shapes to generate the original shape. The decomposition process involves a merging stage, filtering stage and finalized by compromising stage. The merging procedure is based on solving Poisson's equation for two regions satisfying the same symmetrical conditions which leads to finding equivalencies between basic shapes that need to be merged. We implemented and tested our novel algorithm using 2D silhouette images. The test results showed that the proposed algorithm lead to an efficient shape decomposition procedure that transforms any shape into a simpler basic convex shapes.

Reducing Dose in SPECT/CT Using Adaptive Statistical Iterative Reconstruction Technique (Adaptive Statistical Iterative Reconstruction 기법을 이용한 Bone SPECT/CT 검사에서 피폭량 감소 방안)

  • Choi, Jin-Wook;Choi, Hyeon-Jun;Park, Chan-Rok;Cho, Sung-Wook;Kim, Jin-Eui;Lee, Jae-Sung;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.134-139
    • /
    • 2014
  • Purpose: Adaptive statistical iterative reconstruction (ASIR) technique is a reconstruction method of CT image using statistical noise modeling which is known to reduce image noise and to preserve image quality despite reducing radiation dose. The aim of this study is to evaluate images using ASIR on bone SPECT/CT which is primarily performed in our hospital. Materials and Methods: We compared the images of applied ASIR (ASIR level: 20-80%) and none ASIR by changing the mA based on 120 kVp, 100 mA using Discovery NM/CT 670 (GE, U.S.A). First, we evaluated attenuation correction in SPECT image by changing the ASIR level using Anthropomorphic phantom. Second, we compared the contrast to noise ratio (CNR), image noise and spatial resolution in CT image using ACR phantom. Third, after selecting the ASIR level applicable patient using lower torso phantom, we examined 2 patients who followed up bone SPECT/CT and we performed blind test. Results: The degree of attenuation correction in SPECT image showed no significant difference between applied ASIR and none ASIR (P>0.05). When applied ASIR, the noise of CT image were reduced at least 17 up to 52% by changing the mA. The CNR of image with ASIR was maintained more than 0.8 at 40 mA (ASIR 60%) while those without ASIR showed 0.42 at standard 40 mA. In comparison of the high contrast object, we distinguished 12 line pairs/cm at 40 mA regardless of appling ASIR. Comparison of the patients image applied ASIR level 60% (40 mA) which found out by spine image of lower torso phantom showed no signigicant difference between applied ASIR and none ASIR in blind test. The CTDIvol and DLP for applied ASIR 60% showed decreased by 60%, 60% on average than using standard mA. Conclusion: The study show that the radiation dose in SPECT/CT using ASIR can be reduced despite degradation of SPECT and CT images. In addition, higher ASIR level could be possibly applied characteristics of SPECT/CT that region of interest is limited to bone.

  • PDF

Generation of an eye-contacted view using color and depth cameras (컬러와 깊이 카메라를 이용한 시점 일치 영상 생성 기법)

  • Hyun, Jee-Ho;Han, Jae-Young;Won, Jong-Pil;Yoo, Ji-Sang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1642-1652
    • /
    • 2012
  • Generally, a camera isn't located at the center of display in a tele-presence system and it causes an incorrect eye contact between speakers which reduce the realistic feeling during the conversation. To solve this incorrect eye contact problem, we newly propose an intermediate view reconstruction algorithm using both a color camera and a depth camera and applying for the depth image based rendering (DIBR) algorithm. In the proposed algorithm, an efficient hole filling method using the arithmetic mean value of neighbor pixels and an efficient boundary noise removal method by expanding the edge region of depth image are included. We show that the generated eye-contacted image has good quality through experiments.

Nonlinear Force-Free Field Reconstruction Based on MHD Relaxation Method

  • Kang, Jihye;Inoue, Satoshi;Magara, Tetsuya;An, Jun-Mo;Lee, Hwanhee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.72.1-72.1
    • /
    • 2014
  • In this study, we extrapolate a nonlinear force-free field (NLFFF) from an observed photospheric magnetic field to understand the three-dimensional (3D) coronal magnetic field producing a huge solar flare. The purpose of this study is to develop a NLFFF extrapolation code based on the so-called MHD relaxation method and check how accurately our model reconstructs a coronal field. Furthermore, we apply it to the photospheric magnetic field obtained by Helioseismic and Magnetic Imager (HMI) on board Solar Dynamics Observatory (SDO) to reconstruct a 3D magnetic structure. We first investigate factors in controlling the accuracy of our NLFFF code by using a semi-analytical solution obtained by Low & Lou (1990). To extend a work done by Inoue et al. (2014), we apply various boundary conditions at the side and top boundaries in order to make our solution close to a realistic solution. As a consequence, our solution has a good accuracy when three components of a reference field are all fixed at the boundaries. Furthermore, it is also found that our solution is well matched to the Low & Lou solution in the central area of a simulation domain when the three components of a potential field are fixed at side and top boundaries (this approach is close to a realistic solution). Finally, we present the 3D coronal magnetic field producing an X 1.5-class flare in the active region 11166 through the extrapolation from SDO/HMI.

  • PDF

How can the post-war reconstruction project be carried out in a stable manner? - terrorism prediction using a Bayesian hierarchical model (전후 재건사업을 안정적으로 진행하려면? - 베이지안 계층모형을 이용한 테러 예측)

  • Eom, Seunghyun;Jang, Woncheol
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.5
    • /
    • pp.603-617
    • /
    • 2022
  • Following the September 11, 2001 terrorist attacks, the United States declared war on terror and invaded Afghanistan and Iraq, winning quickly. However, interest in analyzing terrorist activities has developed as a result of a significant amount of time being spent on the post-war stabilization effort, which failed to minimize the number of terrorist activities that occurred later. Based on terrorist data from 2003 to 2010, this study utilized a Bayesian hierarchical model to forecast the terrorist threat in 2011. The model depicts spatiotemporal dependence with predictors such as population and religion by autonomous district. The military commander in charge of the region can utilize the forecast value based on the our model to prevent terrorism by deploying forces efficiently.

Reconstruction of Nitrate Utilization Rate Change Based on Diatom-bound Nitrogen Isotope Values in the Central Slope Area of the Bering Sea during the Early Pleistocene (2.4-1.25 Ma) (플라이스토세 전기(2.4-1.25 Ma) 동안 베링해 중부 대륙사면 지역의 규조 골격내 유기물 질소동위원소 값에 의한 질산염 이용률의 변화 복원)

  • Kim, Sunghan;Khim, Boo-Keun
    • Ocean and Polar Research
    • /
    • v.38 no.3
    • /
    • pp.195-207
    • /
    • 2016
  • Because the high latitude region in the North Pacific is characterized by high primary production in the surface water enriched with nutrients, it is important to understand the variation of surface water productivity and associated nutrient variability in terms of global carbon cycle. Surface water productivity change or its related nutrient utilization rate during the Northern Hemisphere Glaciation (NHG; ca. 2.73 Ma) has been reported, but little is known about such circumstances under gradual climate cooling since the NHG. Bulk nitrogen isotope (${\delta}^{15}N_{bulk}$) of sedimentary organic matter has been used for the reconstruction of nutrient utilization rate in the surface water. However, sedimentary organic matter experiences diagenesis incessantly during sinking through the water column and after burial within the sediments. Thus, in this study we examine the degree of nitrate utilization rate during the early Pleistocene (2.4-1.25 Ma) since the NHG, using the diatom-bound nitrogen isotope (${\delta}^{15}N_{db}$), which is known to be little influenced by diagenesis, from Site U1343 in the Bering slope area. ${\delta}^{15}N_{db}$ values range from ~0.5 to 5.5‰, which is lower than ${\delta}^{15}N_{bulk}$ values, but they vary with larger amplitude. Variation patterns between ${\delta}^{15}N_{db}$ values and biogenic opal concentration are generally consistent, which indicates that the nitrate utilization rate is closely related to opal productivity change in the surface water. A positive correlation between opal productivity and nitrate utilization rate was observed, which is different from the other high latitude regions in the North Pacific. The main reason for this contrasting relationship is that the primary production in the surface water at Site U1343 is influenced mostly by the degree of sea ice formation. Still, although concerns about diagenetic alteration have been avoided by using ${\delta}^{15}N_{db}$, the effects of the preservation state of biogenic opal and the species-dependent isotopic fractionation on ${\delta}^{15}N_{db}$ should be assessed in the future studies.

A novel method for determining dose distribution on panoramic reconstruction computed tomography images from radiotherapy computed tomography

  • Hiroyuki Okamoto;Madoka Sakuramachi;Wakako Yatsuoka;Takao Ueno;Kouji Katsura;Naoya Murakami;Satoshi Nakamura;Kotaro Iijima;Takahito Chiba;Hiroki Nakayama;Yasunori Shuto;Yuki Takano;Yuta Kobayashi;Hironori Kishida;Yuka Urago;Masato Nishitani;Shuka Nishina;Koushin Arai;Hiroshi Igaki
    • Imaging Science in Dentistry
    • /
    • v.54 no.2
    • /
    • pp.129-137
    • /
    • 2024
  • Purpose: Patients with head and neck cancer (HNC) who undergo dental procedures during radiotherapy (RT) face an increased risk of developing osteoradionecrosis (ORN). Accordingly, new tools must be developed to extract critical information regarding the dose delivered to the teeth and mandible. This article proposes a novel approach for visualizing 3-dimensional planned dose distributions on panoramic reconstruction computed tomography (pCT) images. Materials and Methods: Four patients with HNC who underwent volumetric modulated arc therapy were included. One patient experienced ORN and required the extraction of teeth after RT. In the study approach, the dental arch curve (DAC) was defined using an open-source platform. Subsequently, pCT images and dose distributions were generated based on the new coordinate system. All teeth and mandibles were delineated on both the original CT and pCT images. To evaluate the consistency of dose metrics, the Mann-Whitney U test and Student t-test were employed. Results: A total of 61 teeth and 4 mandibles were evaluated. The correlation coefficient between the 2 methods was 0.999, and no statistically significant difference was observed (P>0.05). This method facilitated a straightforward and intuitive understanding of the delivered dose. In 1 patient, ORN corresponded to the region of the root and the gum receiving a high dosage (approximately 70 Gy). Conclusion: The proposed method particularly benefits dentists involved in the management of patients with HNC. It enables the visualization of a 3-dimensional dose distribution in the teeth and mandible on pCT, enhancing the understanding of the dose delivered during RT.

TFT-LCD Defect Detection Using Mean Difference Between Local Regions Based on Multi-scale Image Reconstruction (로컬 영역 간 평균 화소값 차를 이용한 멀티스케일 기반의 TFT-LCD 결함 검출)

  • Jung, Chang-Do;Lee, Seung-Min;Yun, Byoung-Ju;Lee, Joon-Jae;Choi, Il;Park, Kil-Houm
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.439-448
    • /
    • 2012
  • TFT-LCD panel images have non-uniform brightness, noise signal and defect signal. It is hard to divide defect signal because of non-uniform brightness and noise signal, so various divide methods have being developed. In this paper, we suggest method to divide defective regions on TFT-LCD panel image by estimating a menas of two different size of windows, which is suggested by Eikvil et al., and using difference of them. But in this method, the size of detectable defects is restricted by the size of window, hence it has inefficient problem that the size of window have to increase to divide a large defect region. To solve this problem we suggest an algorithm which can divide various size of defects, by using Multi-scale and restrict a detectable size of defects in each scale. To prove an efficiency of suggested algorithm, we show that resulting images of real TFT-LCD panel images and an artificial image with various defects.

Depth map temporal consistency compensation using motion estimation (움직임 추정을 통한 깊이 지도의 시간적 일관성 보상 기법)

  • Hyun, Jeeho;Yoo, Jisang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.438-446
    • /
    • 2013
  • Generally, a camera isn't located at the center of display in a tele-presence system and it causes an incorrect eye contact between speakers which reduce the realistic feeling during the conversation. To solve this incorrect eye contact problem, we newly propose an intermediate view reconstruction algorithm using both a color camera and a depth camera and applying for the depth image based rendering (DIBR) algorithm. In the proposed algorithm, an efficient hole filling method using the arithmetic mean value of neighbor pixels and an efficient boundary noise removal method by expanding the edge region of depth image are included. We show that the generated eye-contacted image has good quality through experiments.

QuadTree-Based Lossless Image Compression and Encryption for Real-Time Processing (실시간 처리를 위한 쿼드트리 기반 무손실 영상압축 및 암호화)

  • Yoon, Jeong-Oh;Sung, Woo-Seok;Hwang, Chan-Sik
    • The KIPS Transactions:PartC
    • /
    • v.8C no.5
    • /
    • pp.525-534
    • /
    • 2001
  • Generally, compression and encryption procedures are performed independently in lossless image compression and encryption. When compression is followed by encryption, the compressed-stream should have the property of randomness because its entropy is decreased during the compression. However, when full data is compressed using image compression methods and then encrypted by encryption algorithms, real-time processing is unrealistic due to the time delay involved. In this paper, we propose to combine compression and encryption to reduce the overall processing time. It is method decomposing gray-scale image by means of quadtree compression algorithms and encrypting the structural part. Moreover, the lossless compression ratio can be increased using a transform that provides an decorrelated image and homogeneous region, and the encryption security can be improved using a reconstruction of the unencrypted quadtree data at each level. We confirmed the increased compression ratio, improved encryption security, and real-time processing by using computer simulations.

  • PDF