DOI QR코드

DOI QR Code

플라이스토세 전기(2.4-1.25 Ma) 동안 베링해 중부 대륙사면 지역의 규조 골격내 유기물 질소동위원소 값에 의한 질산염 이용률의 변화 복원

Reconstruction of Nitrate Utilization Rate Change Based on Diatom-bound Nitrogen Isotope Values in the Central Slope Area of the Bering Sea during the Early Pleistocene (2.4-1.25 Ma)

  • 김성한 (부산대학교 자연과학대학 해양학과) ;
  • 김부근 (부산대학교 자연과학대학 해양학과)
  • Kim, Sunghan (Department of Oceanography, College of Natural Sciences, Pusan National University) ;
  • Khim, Boo-Keun (Department of Oceanography, College of Natural Sciences, Pusan National University)
  • 투고 : 2016.05.04
  • 심사 : 2016.09.09
  • 발행 : 2016.09.30

초록

Because the high latitude region in the North Pacific is characterized by high primary production in the surface water enriched with nutrients, it is important to understand the variation of surface water productivity and associated nutrient variability in terms of global carbon cycle. Surface water productivity change or its related nutrient utilization rate during the Northern Hemisphere Glaciation (NHG; ca. 2.73 Ma) has been reported, but little is known about such circumstances under gradual climate cooling since the NHG. Bulk nitrogen isotope (${\delta}^{15}N_{bulk}$) of sedimentary organic matter has been used for the reconstruction of nutrient utilization rate in the surface water. However, sedimentary organic matter experiences diagenesis incessantly during sinking through the water column and after burial within the sediments. Thus, in this study we examine the degree of nitrate utilization rate during the early Pleistocene (2.4-1.25 Ma) since the NHG, using the diatom-bound nitrogen isotope (${\delta}^{15}N_{db}$), which is known to be little influenced by diagenesis, from Site U1343 in the Bering slope area. ${\delta}^{15}N_{db}$ values range from ~0.5 to 5.5‰, which is lower than ${\delta}^{15}N_{bulk}$ values, but they vary with larger amplitude. Variation patterns between ${\delta}^{15}N_{db}$ values and biogenic opal concentration are generally consistent, which indicates that the nitrate utilization rate is closely related to opal productivity change in the surface water. A positive correlation between opal productivity and nitrate utilization rate was observed, which is different from the other high latitude regions in the North Pacific. The main reason for this contrasting relationship is that the primary production in the surface water at Site U1343 is influenced mostly by the degree of sea ice formation. Still, although concerns about diagenetic alteration have been avoided by using ${\delta}^{15}N_{db}$, the effects of the preservation state of biogenic opal and the species-dependent isotopic fractionation on ${\delta}^{15}N_{db}$ should be assessed in the future studies.

키워드

참고문헌

  1. Aiello IW, Ravelo AC (2012) Evolution of marine sedimentation in the Bering Sea since the Pliocene. Geosphere 8:1231-1253 https://doi.org/10.1130/GES00710.1
  2. Altabet MA (1996) Nitrogen and carbon isotopic tracers of the source and transformation of particles in the deep sea. In: Ittekkot V, Schefer P, Honjo S, Depetris P (eds) Particle Flux in the Ocean. John Wiley & Sons, Hoboken, pp 155-171
  3. Altabet MA, Deuser WG, Honjo S, Stienen C (1991) Seasonal and depth-related changes in the source of sinking particles in the North Atlantic. Nature 354:136-139 https://doi.org/10.1038/354136a0
  4. Altabet MA, Francois R (1994) Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Global Biogeochem Cy 8:103-116 https://doi.org/10.1029/93GB03396
  5. Altabet MA, Francois R (2001) Nitrogen isotope biogeochemistry of the Antarctic Polar Frontal Zone at $170^{\circ}W$. Deep-Sea Res Pt II 48:4247-4273 https://doi.org/10.1016/S0967-0645(01)00088-1
  6. Altabet MA, Pilskaln C, Thunell R, Pride C, Sigman DM, Chavez F, Francois R (1999) The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep-Sea Res Pt I 46:655-679
  7. Archer DE (1993) What controls opal preservation n tropical deep-sea sediments? Paleoceanography 8(1):7-21 https://doi.org/10.1029/92PA02803
  8. Asahi H, Kender S, Ikehara M, Sakamoto T, Takahashi K, Ravelo AC, Alvarez-Carikian CA, Khim BK, Leng MJ (2016) Orbital-scale benthic foraminiferal oxygen isotope stratigraphy at the northern Bering Sea Slope Site U1343 (IODP Expedition 323) and its Pleisocene paleoceanographic significance. Deep-Sea Res Pt II 125-126:66-83 https://doi.org/10.1016/j.dsr2.2014.01.004
  9. Brunelle BG, Sigman DM, Cook MS, Keigwin LD, Haug GH, Plessen B, Schettler G, Jaccard SL (2007) Evidence from diatom-bound nitrogen isotopes for subarctic Pacific stratification during the last ice age and a link to North Pacific denitrification changes. Paleoceanography 22:PA1215. doi:10.1029/2005PA001205
  10. Brunelle BG, Sigman DM, Jaccard SL, Keigwin LD, Plessen B, Schettler G, Cook MS, Haug GH (2010) Glacial/interglacial changes in nutrient supply and stratification in the western subarctic North Pacific since the penultimate glacial maximum. Quaternary Sci Rev 29:2579-2590 https://doi.org/10.1016/j.quascirev.2010.03.010
  11. Caissie BE, Grette JB, Lawrence KT, Herbert TD, Cook MS (2010) Last glacial maximum to Holocene sea surface conditions at Umnak Plateau, Bering Sea, as inferred from diatom, alkenone, and stable isotope records. Paleoceanography 25:PA1206. doi:10.1029/2008PA001671
  12. Chase Z, Kohfeld KE, Matsumoto K (2015) Controls on biogenic silica burial in the Southern Ocean. Global Biogeochem Cy 29:1599-1616 https://doi.org/10.1002/2015GB005186
  13. Clark PU, Archer D, Pollard D, Blum JD, Rial JA, Brovkin V, Mix AC, Pisias NG, Roy M (2006) The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric p$CO_2$. Quaternary Sci Rev 25:3150-3184 https://doi.org/10.1016/j.quascirev.2006.07.008
  14. Crosta X, Shemesh A (2002) Reconciling down core anticorrelation of diatom carbon and nitrogen isotopic ratios from the Southern Ocean. Paleoceanography 17:1010. doi:10.1029/2000PA000565
  15. Franck VM, Brzezinski MA, Coale KH, Nelson DM (2000) Iron and silicic acid concentrations regulate Si uptake north and south of the Polar Frontal Zone in the Pacific Sector of the Southern Ocean. Deep-Sea Res Pt II 47:3315-3338 https://doi.org/10.1016/S0967-0645(00)00070-9
  16. Francois R, Altabet MA, Burckle LH (1992) Glacialinterglacial changes in surface nitrate utilization in the Indian sector of the Southern Ocean as recorded by sediment ${\delta}^{15}N$. Paleoceanography 7:589-606 https://doi.org/10.1029/92PA01573
  17. Galbraith ED, Kienast M, Jaccard SL, Pedersen TF, Brunelle BG, Sigman DM, Kieger T (2008) Consistent relationship between global climate and surface nitrate utilization in the western subarctic Pacific throughout the last 500 ka. Paleoceanography 23:PA2212. doi:10.1029/2007PA001518
  18. Ganeshram RS, Pedersen TF, Calvert SE, McNeill GW, Fontugne MR (2000) Glacial-interglacial variability in denitrification in the world's oceans: causes and consequences. Paleoceanography 15:361-376 https://doi.org/10.1029/1999PA000422
  19. Garcia HE, Locarnini RA, Boyer TP, Antonov JI, Zweng MM, Baranova OK, Johnson DR (2010) World ocean atlas 2009, volume 4: nutrients (phosphate, nitrate, silicate). In: Levitus S (ed) NOAA Atlas NESDIS 71. U.S. Government Printing Office, Washington DC, 44 p
  20. Grebmeier JM, Cooper LW, Feder HM, Sirenko BI (2006) Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic. Prog Oceanogr 71:331-336 https://doi.org/10.1016/j.pocean.2006.10.001
  21. Haug GH, Sigman DM, Tiedemann R, Pedersen TF, Sarnthein M (1999) Onset of permanent stratification in the subarctic Pacific Ocean. Nature 401:779-782 https://doi.org/10.1038/44550
  22. Haug GH, Ganopolski A, Sigman DM, Rosell-Mele A, Swann GEA, Tiedemann R, Jaccard SL, Bollmann J, Maslin MA, Leng MJ, Eglinton G (2005) North Pacific seasonality and the glaciations of North Ameirca 2.7 million years ago. Nature 433:821-825 https://doi.org/10.1038/nature03332
  23. Honjo S, Manganini SJ, Krishfield RA, Francois R (2008) Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Prog Oceanogr 76:217-285 https://doi.org/10.1016/j.pocean.2007.11.003
  24. Horn MG, Robinson RS, Rynearson TA, Sigman DM (2011) Nitrogen isotopic relationship between diatom-bound and bulk organic matter of cultured polar diatoms. Paleoceanography 26:PA3208. doi:10.1029/2010PA002080
  25. Kanematsu Y, Takashahi K, Kim S, Asahi H, Khim BK (2013) Changes in biogenic opal productivity with Milankovitch cycles during the last 1.3 Ma at IODP expedition 323 Sites U1341, U1343, and U1345 in the Bering Sea. Quatern Int 310:213-220 https://doi.org/10.1016/j.quaint.2013.06.003
  26. Katsuki K, Takahashi K, Okada M (2003) Diatom assemblage and productivity changes during the last 340,000 years in the subarctic Pacific. J Oceanogr 59:695-707 https://doi.org/10.1023/B:JOCE.0000009598.93075.78
  27. Katsuki K, Takahashi K (2005) Diatoms as paleoenvironmental proxies for seasonal productivity, sea-ice and surface circulation in the Bering Sea during the late quaternary. Deep-Sea Res Pt II 52:2110-2130 https://doi.org/10.1016/j.dsr2.2005.07.001
  28. Khen GV (1999) Hydrography of western Bering Sea shelf water. In: Loughlin TR, Ohtani K (eds) Dynamics of the Bering Sea. University of Alaka Sea Grant, Fairbanks, pp 161-176
  29. Kienast SS, Calvert SE, Pedersen TF (2002) Nitrogen isotope and productivity variations along the northeast Pacific margin over the last 120 kyr: surface and subsurface paleoceanography. Paleoceanography 17:1055. doi:10.1029/2001PA000650
  30. Kim S, Khim BK, Uchida M, Itaki T, Tada R (2011) Millennial-scale paleoceanographic events and implication for the intermediate-water ventilation in the northern slope area of the Bering Sea during the last 71 kyrs. Global Planet Change 79:89-98 https://doi.org/10.1016/j.gloplacha.2011.08.004
  31. Kim S, Takahashi K, Khim BK, Kanematsu Y, Asahi H, Christina AC (2014) Biogenic opal production changes during the Mid-Pleistocene Transition in the Bering Sea (IODP Expedition 323 Site U1343). Quaternary Res 81:151-157 https://doi.org/10.1016/j.yqres.2013.10.001
  32. Kim S, Khim BK, Takahashi K (2016) Late pliocene to early pleistocene (2.4-1.25 Ma) paleoproductivity changes in the Bering Sea: IODP expedition 323 Hole U1343E. Deep-Sea Res Pt II 125-126:155-162 https://doi.org/10.1016/j.dsr2.2015.04.003
  33. Knapp AN, Sigman DM (2003) Stable isotopic composition of dissolved organic nitrogen from the surface waters of the Sargasso Sea. In: ASLO annual meeting, Geological Society of America, Salt Lake City, Utah, 8-14 Feb 2003
  34. Kuramoto T, Minagawa M (2001) Stable carbon and nitrogen isotopic characterization of organic matter in a mangrove ecosystem on the southwestern coast of Thailand. J Oceanogr 57:421-431 https://doi.org/10.1023/A:1021232132755
  35. Leng MJ, Swann GEA (2010) Stable isotopes in diatom silica. In: Smol JP, Stoermer EF (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 127-143
  36. Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic ${\delta}$18O records. Paleoceanography 20:PA1003. doi:1029/2004PA001071
  37. Liu YJ, Song SR, Lee TQ, Lee MY, Chen YL, Chen HF (2006) Mineralogical and geochemical changes in the sediments of the Okhotsk Sea during deglacial periods in the past 500 kyrs. Global Planet Change 53:47-57 https://doi.org/10.1016/j.gloplacha.2006.01.007
  38. Martin JH, Fitzwater SE, Gordeon RM (1990) Iron deficiency limits growth in Antarctic waters. Global Biogeochem Cy 4:5-12 https://doi.org/10.1029/GB004i001p00005
  39. Marz C, Schnetger B, Brumsack H-J (2013) Nutrient leakage from the North Pacific to the Bering Sea (IODP Site U1341) following the onset of northern hemispheric glaciation? Paleoceanography 28:68-78. doi:10.1002/palo.20011
  40. Morley DW, Leng MJ, Mackay AW, Sloane HJ, Rioual P, Battarbee RW (2004) Cleaning of lake sediment samples for diatom oxygen isotope analysis. J Paleolimnol 31:391-401 https://doi.org/10.1023/B:JOPL.0000021854.70714.6b
  41. Muller J, Wagner A, Fahl K, Stein R, Prange M, Lohmann G (2011) Towards quantitative sea ice reconstructions in the northern North Atlantic: a combined biomarker and numerical modelling approach. Earth Planet Sc Lett 306:137-148 https://doi.org/10.1016/j.epsl.2011.04.011
  42. Nakatsuka T, Handa N, Harada N, Sugimoto T, Imaizumi S (1997) Origin and decomposition of sinking particulate organic matter in the deep water column inferred from the vertical distributions of its ${\delta}^{15}N$, ${\delta}^{13}C$ and ${\delta}^{14}C$. Deep-Sea Res Pt I 44:1957-1979 https://doi.org/10.1016/S0967-0637(97)00051-4
  43. Needoba JA, Waser NA, Harrison PJ, Calvert SE (2003) Nitrogen isotope fraction in 12 species of marine phytoplankton during growth on nitrate. Mar Ecol-Prog Ser 255:81-91 https://doi.org/10.3354/meps255081
  44. Niebauer HJ (1998) Variability in Bering Sea ice cover as affected by a regime shift in the North Pacific in the period 1947-1996. J Geophys Res 103:27717-27737 https://doi.org/10.1029/98JC02499
  45. Okazaki Y, Takahashi K, Asahi H, Katsuki K, Hori J, Yasuda H, Sagawa Y, Tokuyama H (2005) Productivity changes in the Bering Sea during the late quaternary. Deep-Sea Res Pt II 52:2150-2162 https://doi.org/10.1016/j.dsr2.2005.07.003
  46. Ostrom NE, Macko SA, Deibel D, Thompson RJ (1997) Seasonal variation in the stable carbon and nitrogen isotope biogeochemistry of a coastal cold ocean environment. Geochim Cosmochim Ac 61:2929-2942 https://doi.org/10.1016/S0016-7037(97)00131-2
  47. Ragueneau O, Treguer P, Leynaert A, Anderson RF, Brzezinski MA, DeMaster DJ, Dugdale RC, Dymond J, Fischer G, Francois R, Heinze C, Maier-Reimer E, Martin-Jezequel V, Nelson DM, Queguiner B (2000) A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Earth Planet Sc Lett 26:317-365
  48. Ragueneau O, Dittert N, Pondaven P, Treguer P (2002) Si/C decoupling in the world ocean: is the Southern Ocean different? Deep-Sea Res Pt II 49:3127-3154 https://doi.org/10.1016/S0967-0645(02)00075-9
  49. Riethdorf J-R, Thibodeau B, Ikehara M, Nurnberg D, Max L, Tiedemann R, Yokoyama Y (2016) Surface nitrate utilization in the Bering Sea since 180 ka BP: insight from sedimentary nitrogen isotopes. Deep-Sea Res Pt II 125-126:163-176 https://doi.org/10.1016/j.dsr2.2015.03.007
  50. Robinson RS, Sigman DM (2008) Nitrogen isotopic evidence for a poleward decrease in surface nitrate within the ice age Antarctic. Quaternary Sci Rev 27:1076-1090 https://doi.org/10.1016/j.quascirev.2008.02.005
  51. Robinson RS, Brunelle BG, Sigman DM (2004) Revisiting nutrient utilization in the glacial Antarctic: evidence from a new method for diatom-bound N isotopic analysis. Paleoceanography 19:PA3001. doi:10.1029/2003PA000996
  52. Robinson RS, Sigman DM, DiFiore PJ, Rohde MM, Mashiotta TA, Lea DW (2005) Diatom-bound $^{15}N$/$^{14}N$: new support for enhanced nutrient consumption in the ice age subantartic. Paleoceanography 20:PA3003. doi: 10.1029/2004PA001114
  53. Robinson RS, Kienast M, Albuquerque AL, Altabet M, Contreras S, De Pol Holz N, Dubois R, Francois R, Galbraith E, Hsu TC, Ivanochko T, Jaccard S, Kao SJ, Kiefer T, Kienast S, Lehmann MF, Martinez P, McCarthy M, Mobius J, Pedersen T, Quan TM, Ryabenko E, Schmittnet A, Schneider R, Schneider-Mor A, Shigemitsu M, Sinclair D, Somes C, Studer A, Thunell R, Yang JY (2012) A review of nitrogen isotopic alteration in marine sediments. Paleoceanography 27:PA4203. doi:10.1029/2012PA002321
  54. Ruth U, Bigler M, Rothlisberger R, Siggaard-Andersen M-L, Kipfstuhl S, Goto-Azuma K, Hansson ME, Johnsen SJ, Lu H, Steffensen JP (2007) Ice core evidence for a very tight link between North Atlantic and east Asian glacial climate. Geophys Res Lett 34:L03706. doi:10.1029/2006GL027876
  55. Sachs JP, Repeta DJ (1999) Oligotrophy and nitrogen fixation during eastern Mediterranean sapropel events. Science 286:2485-2488 https://doi.org/10.1126/science.286.5449.2485
  56. Schlung SA, Ravelo AC, Aiello IW, Andreasen DH, Cook MS, Drake M, Dyez KA, Guilderson TP, LaRiviere JP, Stroynowski Z, Takahashi K (2013) Millennial-scale climate change and intermediate water circulation in the Bering Sea from 90 ka: a high-resolution record from IODP Site U1340. Paleoceanography 28:1-14 https://doi.org/10.1029/2012PA002326
  57. Shemesh A, Mortlock RA, Smith RJ, Froelich PN (1988) Determination of Ge/Si in marine siliceous microfossils: separation, cleaning and dissolution of diatoms and radiolarian. Mar Chem 25:305-323 https://doi.org/10.1016/0304-4203(88)90113-2
  58. Shimada C, Sato T, Yamasaki M, Hasegawa S, Tanaka Y (2009) Drastic change in the late Pliocene subarctic Pacific diatom community associated with the onset of the Northern Hemisphere Glaciation. Palaeogeogr Palaeocl 279:207-215 https://doi.org/10.1016/j.palaeo.2009.05.015
  59. Sigman DM, Altabet MA, Francois R, McCorkle DC, Gailard JF (1999) The isotopic composition of diatom-bound nitrogen in Southern Ocean sediments. Paleoceanography 14:118-134 https://doi.org/10.1029/1998PA900018
  60. Sigman DM, Casciotti KL, Andreani M, Barford C, Galanter M, Bohike JK (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4345-4153 https://doi.org/10.1021/ac010088e
  61. Sigman DM, Jaccard SL, Haug GH (2004) Polar ocean stratification in a cold climate. Nature 428:59-63 https://doi.org/10.1038/nature02357
  62. Springer AM, McRoy PC, Flint MV (1996) The Bering Sea Green Belt: shelf-edge processes and ecosystem production. Fish Oceanogr 5:205-223 https://doi.org/10.1111/j.1365-2419.1996.tb00118.x
  63. Studer AS, Martinez-Garcia A, Jaccard SL, Girault FE, Sigman DM, Haug GH (2012) Enhanced stratification and seasonality in the Subarctic Pacific upon Northern Hemisphere Glaciation-New evidence from diatom-bound nitrogen isotopes, alkenones and archaeal tetraethers. Earth Planet Sc Lett 351-352:84-94 https://doi.org/10.1016/j.epsl.2012.07.029
  64. Studer AS, Ellis KK, Oleynik S, Sigman DM, Haug GH (2013) Size-specific opal-bound nitrogen isotope measurements in North Pacific sediments. Geochim Cosmochim Ac 120: 179-194 https://doi.org/10.1016/j.gca.2013.06.041
  65. Studer AS, Sigman DM, Martinez-Garcia A, Benz V, Winckler G, Kuhn G, Esper O, Lamy F, Jaccard SL, Wacker L, Oleynik S, Gersonde R, Haug GH (2015) Antarctic Zone nutrient conditions during the last two glacial cycles. Paleoceanography 30:845-862 https://doi.org/10.1002/2014PA002745
  66. Takahashi K, Fujitani N, Yanada N (2002) Long term monitoring of particle fluxes in the Bering Sea and the central the central subarctic Pacific Ocean, 1990-2000. Prog Oceanogr 55:95-112 https://doi.org/10.1016/S0079-6611(02)00072-1
  67. Takahashi K, Ravelo AC, Alvarez Zarikian CA, the IODP Expedition 323 Scientists (2011) IODP Expedition 323-Pliocene and Pleistocene paleoceanographic changes in the Bering Sea. Scientific Drilling 11:4-13 https://doi.org/10.5194/sd-11-4-2011
  68. Teraishi A, Suto I, Onodera J, Takahashi K (2016) Diatom, silicoflagellate and ebridian biostratigraphy and paleoceanography in IODP 323 Hole U1343E at the Bering slope site. Deep-Sea Res Pt II 125-126:18-28 https://doi.org/10.1016/j.dsr2.2013.03.026
  69. Tsuda A, Takeda S, Saito H, Nishioka J, Nojiri Y, Kudo I, Kiyosawa H, Shiomoto A, Imai K, Ono T, Shimamoto A, Tsumune D, Yoshimura T, Aono T, Hinuma A, Kinugasa M, Suzuki K, Sohrin Y, Noiri Y, Tani H, Deguchi Y, Tsurushima N, Ogawa H, Fukami K, Kuma K, Saino T (2003) A mesoscale iron enrichment in the western subarctic pacific induces a large centric diatom bloom. Science 300:958-961 https://doi.org/10.1126/science.1082000
  70. Yang C, Wilkinson GM, Cole JJ, Macko SA, Pace ML (2014) Assigning hydrogen, carbon, and nitrogen isotope values for phytoplankton and terrestrial detritus in aquatic food web studies. Inland Waters 4:233-242 https://doi.org/10.5268/IW-4.2.700
  71. Zheng Y, Anderson RF, Froelich PN, Beck W, McNichol AP (2002) Challenges in radiocarbon dating organic carbon in opal-rich marine sediments. Radiocarbon 44:123-136 https://doi.org/10.1017/S0033822200064729