• Title/Summary/Keyword: Refrigerant R-22

Search Result 243, Processing Time 0.029 seconds

Performance of R430A on Refrigeration System of Domestic Water Purifiers (대체냉매 R430A를 적용한 정수기 냉동시스템의 성능 평가)

  • Park, Ki-Jung;Lee, Yo-Han;Jung, Dong-Soo;Kim, Kyoung-Kee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.109-117
    • /
    • 2009
  • In this study, thermodynamic performance of R430A is examined both numerically and experimentally in an effort to replace HFC134a used in the refrigeration system of domestic water purifiers. Even though HFC134a is used predominantly in such a system these days, it needs to be phased out in the near future in Europe and most of the developed countries due to its high global warming potential. To solve this problem, cycle simulation and experimental measurements are carried out with a new refrigerant mixture of 76%R152a124% R600a using actual domestic water purifiers. This mixture is numbered and listed as R430A by ASHRAE recently. Test results show that the system performance with R430A is greatly influenced by the amount of charge due to the small internal volume of the refrigeration system of the domestic water purifiers. With the optimum amount of charge of 21 to 22 grams, about 50% of HFC134a, the energy consumption of R430A is 13.4% lower than that of HFC 134a. The compressor dome and discharge temperatures and condenser center temperature of R430A are very similar to those of HFC134a at the optimum charge. Overall, R430A, a new long term environmentally safe refrigerant, is a good alternative for HFC134a requiring little change in the refrigeration system of the domestic water purifiers.

External Condensation Heat Transfer Coefficients of R1234yf (신냉매 R1234yf의 외부 응축 열전달계수)

  • Park, Ki-Jung;Lee, Cheol-Hee;Kang, Dong-Gyu;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.6
    • /
    • pp.345-352
    • /
    • 2010
  • In this study, external condensation heat transfer coefficients(HTCs) of R134a and R1234yf are measured on a plain, low fin, and Turbo-C tubes at the saturated vapor temperature of $39^{\circ}C$ with the wall subcooling of $3{\sim}8^{\circ}C$. R1234yf is a new alternative refrigerant of low greenhouse warming potential for replacing R134a which is one of the greenhouse gases controlled by Kyoto protocol and is used extensively in mobile air-conditioners. Test results show that the external condensation HTCs of R1234yf are very similar to those of R134a for all three surfaces tested. For the application of condensation heat transfer correlations to the design of condensers charged with R1234yf, thorough property measurements are needed for R1234yf in the near future.

Effect of Flow Direction on Two-Phase Flow Distribution of Refrigerants at a T-Junction

  • Tae Sang-Jin;Cho Keum-Nam
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.717-727
    • /
    • 2006
  • The present study experimentally investigated the effect of flow direction and other flow parameters on two-phase flow distribution of refrigerants at a T-junction, and also suggested a prediction model for refrigerant in a T-junction by modifying previous model for air-water flow. R-22, R-134a, and R-410A were used as test refrigerants. As geometric parameters, the direction of the inlet or branch tube and the tube diameter ratio of branch to inlet tube were chosen. The measured data were compared with the values predicted by the models developed for air-water or steam-water mixture in the literature. We propose a modified model for application to the reduced T-junction and vertical tube orientation. Among the geometric parameters, the branch tube direction showed the biggest sensitivity to the mass flow rate ratio for the gas phase, while the inlet quality showed the biggest sensitivity to the mass flow rate ratio among the inlet flow parameters.

An experimental study on the performance of the separate type heat pipe in accordance with the refrigerant charge (냉매 충진량에 따른 분리형 히트파이프 성능에 관한 실험적 연구)

  • Jeon, Sung-Taek;Cho, Jin-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1600-1604
    • /
    • 2015
  • As modern houses are constructed with high-density and high-insulation, there is benefit to reduce energy consumption, but there are many side effects raised from polluted air. To solve the problem, a ventilation system is used to improve a indoor air quality. In this research, we experimentally estimate ventilation performance of HRV(heat recovery ventilator) with heat-pipe according to working fluid filling quantity and ventilation. Heat-pipe used in this study was designated separately to be applied to a ventilation system. The working fluid was R22, which was filled from 40 to 55 (%vol.) by 5(%vol.). Ventilation based on the front velocity was measured from 0.3 m/s to 1.5 m/s by 0.3 m/s intervals. Refrigerant filling quantity with the highest efficiency was found to depend on the ventilation. From this study the optimal refrigerant filling quantity in accordance with the ventilation of the detachable heat pipes was found experimentally.

Experimental study for the pressure drop of R-22 and R-4O7C during the condensation in the micro-fin tubes (마이크로핀관내에서 R-22와 R-4O7C의 응축압력강하 특성에 관한 실험적 연구)

  • Roh, Geon-Sang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.715-722
    • /
    • 2007
  • Experiments were conducted for the investigation of pressure drop inside horizontal micro-fin tubes during the condensation of R-22 and ternary refrigerant. R-407C(HFC-32/125/134a 23/25/62 wt%) as a substitute of R-22. The condenser is a double-tube and counterflow type heat exchanger which is consisted with micro-fin tubes having 60 fins with a length of 4000mm, outer diameter of 9.53mm and fin height of 0.2mm. The mass velocity varied from 102.1 to $301.0kg/(m^2{\cdot}s)$ and inlet quality was fixed as 1.0. From the experimental results. the pressure drop for R-407C was considerably higher than that for R-22. The value of PF(penalty factor) for both of refrigerants was not bigger than the ratio of micro-fin tube area to smooth tube area. Based on the experimental data. correlation was Proposed for the prediction of frictional pressure drop during the condensation of R-22 and R-407C inside horizontal micro-fin tubes.

Utilization Of Ethane As Working Fluid At Two-Stage Cascade Vapour Compression System

  • Kim, Yeong-Geun;Shin, You-Sik;Jeong, Hyo-Min;Chung, Han-Shik;Lubi, Rahadiyan
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.414-420
    • /
    • 2005
  • For supporting future demands of lower temperature. environmental friendly low- temperature refrigerants must be studied and developed to replace halocarbon. Ethane. which is one of hydrocarbon compound. is an environmental friendly refrigerant because it has zero ODP and GWP ${\sim}$ 20[per 100yr]. On this study, two-stage cascade refrigeration system was utilized to investigate performance of ethane on the low-stage. By employing R22 at higher stages. energetic performance as well as operating condition of R22/R170 system is compared to R22/R23. At low stage evaporation pressure ranges from 1.10 to 2.74 bar, R22/R170 shows higher COP over R22/R23. Furthermore, at the same range evaporation temperature R22/R170 can reach lower temperature.

  • PDF

Performance Evaluation of R435A on Refrigeration System of Water Purifiers (R435A를 적용한 정수기 냉동시스템의 성능평가)

  • Lee, Yo-Han;Kang, Dong-Gyu;Choi, Hyun-Joo;Jung, Dong-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.15-23
    • /
    • 2013
  • In this study, thermodynamic performance of R435A is examined both numerically and experimentally in an effort to replace HFC134a used in the refrigeration system of domestic water purifiers. Even though HFC134a is used predominantly in such a system these days, it needs to be phased out in the near future in Europe and most of the developed countries due to its high global warming potential. To solve this problem, cycle simulation and experimental measurements are carried out with a new refrigerant mixture of 20%R152a/80%RE170 using actual domestic water purifiers. This mixture is numbered and listed as R435A by ASHRAE recently. Test results show that the system performance with R435A is greatly influenced by the amount of charge due to the small internal volume of the refrigeration system of the domestic water purifiers. With the optimum amount of charge of 21 to 22 grams, about 50% of HFC134a, the energy consumption of R435A is 11.8% lower than that of HFC134a. The compressor discharge temperature of R435A $8^{\circ}C$ lower than that of HFC134a at the optimum charge. Overall, R435A, a new long term environmentally safe refrigerant, is a good alternative for HFC134a requiring little change in the refrigeration system of the domestic water purifiers.

External Condensation Heat Transfer Coefficients of R22 Alternative Refrigerants and R134a According to the Saturated Vapor Temperature Change on a Smooth Tube (수평관에서 R22 대체냉매 및 R134a의 포화증기 온도변화에 따른 외부 응축 열전달계수에 관한 연구)

  • Yoo Gil-Sang;Hwang Ji-Hwan;Park Ki-Jung;Jung Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.8
    • /
    • pp.729-735
    • /
    • 2005
  • In this study, external condensation heat transfer coefficients (HTCs) were measured on a horizontal smooth tube at the saturated vapor temperature of $30^{\circ}C,\;39{\circ}C,\;and\;50^{\circ}C$ for R22, R410A, R407C, and R134a with the wall subcooling of $3\~8^{\circ}C$. The HTCs of all refrigerants are the highest at $30^{\circ}C,\;39{\circ}C,\;and\;50^{\circ}C$ in order. This trend is due to its excellent thermodynamic properties of the liquid phase. The measured data of HTCs were compared with the calculated ones by Nusselt's equation for a smooth tube. Measured HTCs of R22, R134a, R410A are $4.2\~7.5\%$ higher than prediction respectively while those of R407C are $15.6\~28.9\%$ lower than the prediction.

Development of the closed-loop Joule-Thomson cryoablation device for long area cooling

  • Lee, Cheonkyu;Park, Inmyong;Yoo, Donggyu;Jeong, Sangkwon;Park, Sang Woo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.40-48
    • /
    • 2013
  • Cryoablation device is a surgical instrument to produce the cooling effect to destroy detrimental biological tissue by utilizing low temperature around 110 K. Usually, this device has the concentrated cooling region, so that it is suitable for concentrated and thick target. Accordingly, it is hard to apply this device for the target which is distributed and thin target. In this study, the design procedure of a closed-loop cryoablation device with multiple J-T expansion part is developed for the treatment of incompetent of great saphenous vein. The developed cyoablation device is designed with the analysis of 1-dimensional (1-D) bio-heat equation. The energy balance is considered to determine the minimum mass flow rate of refrigerant for consecutive flow boiling to develop the uniform cooling temperature. Azeotropic mixed refrigerant R410A and zeotropic mixed refrigerant (MR) of R22 ($CHClF_2$) and R23 ($CHF_3$) are utilized as operating fluids of the developed cryoablation device to form the sufficient temperature and to verify the quality of the inside of cryoablation probe. The experimental results of R410A and the zeotropic MR show the temperature non-uniformity over the range are $244.8K{\pm}2.7K$ and $239.8K{\pm}4.7K$ respectively. The experimental results demonstrate that the probe experiences the consecutive flow boiling over the target range of 200 mm.

Experiments on Condensation Heat Transfer Characteristics and Flow Regime Inside Microfin Tubes (마이크로핀관내 유동 양식과 응축 열전달 특성 연구)

  • 한동혁;이규정
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.602-611
    • /
    • 2001
  • Experiments on the condensation heat transfer characteristics inside a smooth and a microfin tube with R410A/R22 are performed in this study. The test tubes 7/9.52 mm in outside diameters and 3m in length are used. Varying the mass flux of the refrigerant and the condensation temperatures, the average heat transfer coefficients and pressure drop are investigated. Most flows in this study are in the annular and/or wavy flow regime. It is shown that the heat transfer is enhanced and the pressure drops are larger in the microfin tube than the smooth tube. From the heat transfer enhancement coefficients and the pressure drops, it is found that the high heat transfer enhancement factors are obtained in the range of small mass flux while the penalty factors are almost equal. Experiments results show that average heat transfer coefficients of R410A is larger than that of R22 and pressure drop of R410A is less than R22.

  • PDF