External Condensation Heat Transfer Coefficients of R1234yf

신냉매 R1234yf의 외부 응축 열전달계수

  • Received : 2009.08.26
  • Accepted : 2010.03.12
  • Published : 2010.06.10

Abstract

In this study, external condensation heat transfer coefficients(HTCs) of R134a and R1234yf are measured on a plain, low fin, and Turbo-C tubes at the saturated vapor temperature of $39^{\circ}C$ with the wall subcooling of $3{\sim}8^{\circ}C$. R1234yf is a new alternative refrigerant of low greenhouse warming potential for replacing R134a which is one of the greenhouse gases controlled by Kyoto protocol and is used extensively in mobile air-conditioners. Test results show that the external condensation HTCs of R1234yf are very similar to those of R134a for all three surfaces tested. For the application of condensation heat transfer correlations to the design of condensers charged with R1234yf, thorough property measurements are needed for R1234yf in the near future.

Keywords

References

  1. Montreal Protocol on Substances That Deplete the Ozone Layer, 1989, Final Act, United Nations Environment Programme.
  2. Jetter, J., 1996, Evaluation of Alternatives for HFC-134a Refrigerant in Motor Vehicle Air Conditioning, Proceedings of the International Conference on Ozone Protection Technologies, Washington, DC., USA, pp. 845-854.
  3. Global Environmental Change Report, 1997, A Brief Analysis of the Kyoto Protocol, Vol. IX, No. 24, December.
  4. Nielsen, O. J., Javadi, M. S., Sulbaek Andersen, M. P., Hurley, M. D., Wallington, T. J. and Singh, R., 2007, Atmospheric chemistry of $CF_3CF=CH_2$ : Kinetics and mechanisms of gas-phase reactions with Cl atoms, OH radicals, and $O_3$, Chemical Physics Letters, Vol. 439, pp. 18-22. https://doi.org/10.1016/j.cplett.2007.03.053
  5. Minor, B. and Spatz, M., 2008, HFO-1234yf low GWP refrigerant update, Proceedings of International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, Indiana, USA, 2349.
  6. Zilio, C., Brown, J. S. and Cavallini, A., 2009, Simulation of R-1234yf performance in a typical automotive system, 3rd IIR Conference on Thermophysical Properties and Transfer Processes of Refrigerants, Boulder, CO, USA, IIR-1280.
  7. Carnavos, T. C., 1980, An experimental study : Condensing R-11 on augmented tubes, ASME, No. 80-HT-54, pp. 54-60.
  8. Yau, K. K., Cooper, J. R. and Rose, J. W., 1989, Effect of fin spacing on the performance of horizontal integral fin condenser tubes, Journal of Heat Transfer, Vol. 107, pp. 377-383.
  9. Rudy, T. M. and Webb, R. L., 1985, An analytical model to predict condensate retention on horizontal integral-fin tubes, Journal of Heat Transfer, Vol. 107, pp. 361-368. https://doi.org/10.1115/1.3247423
  10. Michael, A, G., Marto, P. J., Wanniarachchi, A. S. and Rose, J. W., 1989, Effect of vapour velocity during condensation on horizontal smooth and finned tubes, ASEM THD, Vol. 114, pp. 1-10.
  11. Sukhatme, S. P., Jagadish, B. S. and Prabhakran, P., 1990, Film condensation of R-11 vapor on single horizontal enhanced condenser tubes, Journal of Heat Transfer, Vol. 112, pp. 229-234. https://doi.org/10.1115/1.2910350
  12. Kim, N. H., Jung, I. K. and Kim, K. H., 1995, An experimental study on the condensation heat transfer of low-finnd tubes, Korean Journal of Air-Conditioning Refrigeration Engineering Vol. 7, No. 2, pp. 298-309.
  13. Kumar, R., Gupta, A. and Vishvakarma, S., 2005 Condensation of R-134a vapour over single horizontal integral-fin tubes : effect of gin height, International Journal of Refrigeration, Vol. 28, pp. 428-435. https://doi.org/10.1016/j.ijrefrig.2004.04.007
  14. Webb, R. L. and Murawski, C. G., 1990, Row effective for R-11 condensation on enhanced tubes, Transactions of the ASME, Vol. 112, pp. 768-776. https://doi.org/10.1115/1.2910452
  15. Park, C. H., Lee, Y. S., Jeong, J. H. and Kang, Y. T., 2006, The experimental study on the heat transfer of HFC134a for condensation tubes with various enhanced surfaces, Korea Journal of Air-Conditioning and Refrigeration Engineering, Vol. 18, No. 8, pp. 613-619.
  16. Webb. R. L., 1994, Principles of enhanced heat transfer, John Wiley and Sons, Inc., New York, pp. 21-29.
  17. Jung, D. S., Kim, C. B., Cho, S. J. and Song, K. H., 1999, Condensation heat transfer coefficients of enhanced tubes with alternative refrigerants for R11 and R12, International Journal of Refrigeration, Vol. 22, pp. 548-557. https://doi.org/10.1016/S0140-7007(99)00020-1
  18. Kline, S. J. and McClintock, F. A., 1953, Describing uncertainties in single-sample experiments, Mechanical Engineer, Vol. 75, pp. 3-9.
  19. Jung, D. S., Kim, C. B., Hwang, S. and Kim, K., 2003, Condensation heat transfer coefficients of R22, R407C, and R410A on a horizontal plain, low fin, and Turbo-C tubes, International Journal of Refrigeration, Vol. 26, pp. 485-491. https://doi.org/10.1016/S0140-7007(02)00161-5
  20. Jung, D. S., Chae, S. N., Bae, D. S. and Oho, S. J., 2004, Condensation heat transfer coefficients of flammable refrigerants, International Journal of Refrigeration, Vol. 27, pp. 314-317. https://doi.org/10.1016/j.ijrefrig.2003.09.006
  21. Nusselt W., 1916, Die oberflachenkondensa tion des wasserdampfes, Z. Ver. Deut. Ing., Vol. 60, p. 541.
  22. Lemmon, E. W., Huber, M. L. and McLinden, M. O., 2007, NIST Reference Fluid Thermodynamics and Transport Properties, REFPROP version 8.0.