• 제목/요약/키워드: Refrigerant Pressure Drop

검색결과 188건 처리시간 0.023초

R410A 냉매를 사용한 열펌프용 열교환기의 형상에 따른 성능특성 연구 (A Study on Performance Characteristics of Heat Exchanger for Heat Pump with R410A Refrigerant)

  • 정규하;박윤철;오상경
    • 설비공학논문집
    • /
    • 제16권4호
    • /
    • pp.340-348
    • /
    • 2004
  • The air and refrigerant side heat transfer performances are key parameters to improve heat transfer efficiency of the heat exchanger including the fan performance. Design of the fins, treatment of the tube inside, tube diameter and tube array effect heat transfer performance of the heat exchanger. The heat exchanger is used as a condenser at cooling mode and used as an evaporator at heating mode in the heat pump system. The heat pump system uses R410A as the refrigerant. The heat exchangers are consisted with 7 mm diameter tubes with slit-type fins. The study was conducted with variation of arrangement of the refrigerant path and air flow rate and refrigerant pressure drop and heat transfer rate were measured with a code tester. The capacity of the 3 path heat exchanger is more efficient than 2 or 4 path heat exchangers in heating or cooling modes.

수평관내 이산화탄소의 증발 압력강하 (Evaporation pressure drop of $CO_2$ in a horizontal tube)

  • 이동건;손창효;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권5호
    • /
    • pp.552-559
    • /
    • 2005
  • The evaporation pressure drop of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump. a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth. horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $500\;kg/m^{2}s$, saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$. and heat flux of 10 to $40\;kW/m^2$. The test results showed the evaporation pressure drop of $CO_2$ are highly dependent on the vapor qualify, heat flux and saturation temperature. The evaporation pressure drop of $CO_2$ is very lower than that of R-22. In comparison with test results and existing correlations. the best fit of the present experimental data is obtained with the correlation of Choi et al. But existing correlations failed to predict the evaporation pressure drop of $CO_2$. Therefore, it is necessary to develop reliable and accurate predictions determining the evaporation pressure drop of $CO_2$ in a horizontal tube.

간접 냉동 시스템용 2차 냉매의 열전달과 압력강하 특성 (Heat Transfer and Pressure Drop Characteristics of Secondary Refrigerants Applying to Indirect Refrigeration System)

  • 오후규;손창효;조환;이문빈;전민주
    • 동력기계공학회지
    • /
    • 제17권4호
    • /
    • pp.45-50
    • /
    • 2013
  • This paper presents the comparison of heat transfer and pressure drop of various secondary refrigerants (single-phase and two-phase) in the indirect refrigeration system. The main results were summarized as follows: In case of heat transfer, it is useful to use secondary refrigerants in low evaporating temperature region and the heat transfer coefficient of single-phase is larger than two-phase secondary refrigerants. In case of pressure drop, it is useful to use secondary refrigerants in high evaporating temperature region and the pressure drop of two-phase is smaller than single-phase secondary refrigerant. Also, $CO_2$ is the best useful because pressure drop of $CO_2$ among the secondary refrigerants is the smallest.

헬리컬코일형 $CO_2$ 가스쿨러의 열전달과 압력강하 (Heat Transfer and Pressure Drop of $CO_2$ Gas Cooler in a Helically Coiled Tube)

  • 경남수;유태근;손창효;오후규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.246-247
    • /
    • 2005
  • The paper presents the heat transfer characteristics during cooling process of carbon dioxide($CO_2$) in a helically coiled tube. The main components of the apparatus consist of a receiver, a variable speed pump, a mass flowmeter, a pre-heater, a gas cooler(test section) and an isothermal tank. The test section with the inner diameter 4.55 [mm] is a tube in tube type heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus. The main results were summarized as follows : The heat transfer coefficient increases with respect to the decrease of the gas cooler pressure in a supercritical region and the increase of the refrigerant mass flux. The pressure drop decreases in increases of the gas cooler pressure and increases with respect to increases the refrigerant mass flux.

  • PDF

Plate-shell 열교환기에서 R245fa의 응축열전달 및 압력강하 특성에 관한 연구 (Condensation Heat Transfer and Pressure Drop of R245fa in a Plate-shell Heat Exchanger)

  • 김성우;백창현;송강섭;김용찬
    • 설비공학논문집
    • /
    • 제28권12호
    • /
    • pp.495-501
    • /
    • 2016
  • Condensation heat transfer and pressure drop of R245fa were investigated experimentally in a plate-shell heat exchanger which consisted of thirty seven counter flow channels formed by thirty-eight plates with a chevron angle of $50^{\circ}$. The upflow of the water in one channel receives heat from the downflow of R245fa in the other. The effects of refrigerant mass flux, imposed heat flux, refrigerant saturation pressure, and mean vapor quality on the heat transfer characteristics were explored in detail. Experimental correlations were proposed to predict the condensation heat transfer coefficient and friction factor in terms of the Boiling number, Reynolds number, and Prandtl number. In the experiments, the mean vapor quality in the refrigerant channel was varied from .22 to .82, mass flux from 3 to $5kg/m^2$, imposed heat flux from 1 to $3kW/m^2$, and system pressure from .61 to .81 MPa.

초임계 영역내 $CO_2$ 냉각 열전달과 압력강하 분석 (Analysis of Heat Transfer and Pressure Drop During Gas Cooling Process of Carbon Dioxide in Transcritical Region)

  • 손창효;이동건;정시영;김영률;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권1호
    • /
    • pp.65-74
    • /
    • 2004
  • The heat transfer coefficient and pressure drop of $CO_2$(R-744) during gas cooling Process of carbon dioxide in a horizontal tube were investigated experimentally and theoretically. The experiments were conducted without oil in the refrigerant loop. The main components of the refrigerant loop consist of a receiver. a variable-speed pump. a mass flowmeter, an evaporator. and a gas cooler(test section). The main components of the water loop consist of a variable-speed Pump. an constant temperature bath. and a flowmeter. The gas cooler is a counterflow heat exchanger with refrigerant flowing in the inner tube and water flowing in the annulus The test section consists of smooth, horizontal stainless steel tube of 9.53 mm outer diameter and 7.75 mm inner diameter. The length of test section is 6 m. The refrigerant mass fluxes were 200 ~ 300 kg/($m^2{\cdot}s$) and the inlet pressure of the gas cooler varied from 7.5 MPa to 8.5 MPa. The main results were summarized as follows : The predicted correlation can evaluated the R-744 exit temperature from the gas cooler within ${\pm}10%$ for most of the experimental data, given only the inlet conditions. The predicted gas cooley capacity using log mean temperature difference showed relatively food agreement with gas cooler capacity within ${\pm}5%$. The pressure drop predicted by Blasius estimated the pressure drop on the $CO_2$ side within ${\pm}4.3%$. The predicted heat transfer coefficients using Gnielinski's correlation evaluated the heat transfer coefficients on the $CO_2$ side well within the range of experimental error. The predicted heat transfer coefficients using Gao and Honda's correlation estimated the heat transfer coefficients on the coolant side well within ${\pm}10\;%$. Therefore. The predicted equation's usefulness is demonstrated by analyzing data obtained in experiments.

R407C의 온도구배와 과열도가 증발기 성능에 미치는 영향 (Effects of the Temperature Glide and Superheat of R407C on the Performance of Evaporator)

  • 김창덕;전창덕;이진호
    • 설비공학논문집
    • /
    • 제15권10호
    • /
    • pp.852-859
    • /
    • 2003
  • R407C is considered as an alternative refrigerant of R22 for air conditioners. An experiment was carried out to investigate the characteristics of the evaporation heat transfer and pressure drop for refrigerant R407C flowing in a fin-and-tube heat exchanger used for commercial air-conditioning unit. The experimental data were useful in analyze the effects of the temperature glide and superheat for R407C. Test were conducted at the conditions of inlet refrigerant evaporation temperature of 7$^{\circ}C$, inlet air relative humidity of 50%, and refrigerant mass fluxes varying from 150 to 250 kg/m$^2$s. Representative results show that the heat exchanger performance for R407C evaporation is significantly affected by the change of the flow pattern from two-phase to super-heated vapor flow.

수평 평활관 및 전열촉진관내 대체 냉매 R-407C의 응축 열전달 특성에 관한 연구 (Heat Transfer Characteristics of R-407C During Condensing Inside Horizontal Smooth and Micro-Fin Tubes)

  • 노건상;오후규
    • 대한기계학회논문집B
    • /
    • 제23권2호
    • /
    • pp.210-217
    • /
    • 1999
  • This paper reports the experimental results on heat transfer characteristics of R-22 and R-407C(HFC-32/125/134a 23/25/52 wt%) condensing inside horizontal smooth and finned tubes. The test condensers used In the study are double pipe heat exchangers of 7.5 mm ID, 9.5 mm OD smooth tube, and 60 finned micro-fin tube with 8.53 mm ID, 9.53 mm OD. Each of these tubes was 4 000 mm long tubes connected with an U-bend. These U type two-path test tubes are divided In 8 local test sections for the identification of the local condensing heat transfer characterisitcs and pressure drop, U-bend effects on condensing flows. Inlet quality is maintained 1.0, and refrigerant mass velocity is varied from 102.0 to $301.0kg/m^2{\cdot}s$. From the results, it was found that the pressure drop of the R-407C Increased, and heat transfer coefficient decreased compared to those of R-22. In comparison condensing heat transfer characteristics of micro-fm tube with those of smooth tube, increasing of condensing heat transfer coefficient was found outstanding compared to the increasing ratio of pressure drop. Furthermore, pressure drop In U-bend showed at most a 30 % compared to the total pressure drop in the test section.

탄화수소계 냉매의 증발 열전달 및 압력강하 특성 (Characteristics on Evaporating Heat Transfer and Pressure Drop of HCs Refrigerants)

  • 이광배;이호생;김재돌;윤정인
    • 설비공학논문집
    • /
    • 제17권7호
    • /
    • pp.681-687
    • /
    • 2005
  • Experimental results for heat transfer characteristic and pressure gradients of HCs refrigerants R-290, R-600a, R-1270 and HCFC refrigerant R-22 during evaporating inside horizontal double pipe heat exchangers are presented. The test sections which has one tube diameter of 12.70 m with 0.86 mm wall thickness, another tube diameter of 9.52 mm with 0.76 mm wall thickness are used for this investigation. The local evaporating heat transfer coefficients of hydrocarbon refrigerants were higher than that of R-22. The average evaporating heat transfer coefficient increased with the increase of the mass flux. It showed the higher values in hydrocarbon refrigerants than R-22. Hydrocarbon refrigerants have higher pressure drop than R-22 in 12.7 mm and 9.52 mm. This results form the investigation can be used in the design of heat transfer exchangers using hydrocarbons as the refrigerant for the air- conditioning systems.

탄화수소계 냉매의 응축 열전달 및 압력강하 특성 (Characteristics of Condensing Heat Transfer and Pressure Drop of HCs Refrigerants)

  • 이호생;이광배;문춘근;김재돌;윤정인
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.1143-1148
    • /
    • 2005
  • Experimental results for heat transfer characteristic and pressure gradient of HCs refrigerants R-290, R-600a, R-1270 and HCFC refrigerant R-22 during condensing inside horizontal double pipe heat exchangers are presented. The test sections which have one tube diameter of 12.70 mm with 0.86 mm wall thickness, another tube diameter of 9.52 mm with 0.76 mm wall thickness are used for this investigation. The local condensing heat transfer coefficients of hydrocarbon refrigerants were higher than those of R-22. The average condensing heat transfer coefficient increased with the increase of the mass flux. It showed the higher values in hydrocarbon refrigerants than R-22. Hydrocarbon refrigerants have higher pressure drop than those of R-22 in 12.7 mm and 9.52 mm. This results from the investigation can be used in the design of heat transfer exchangers using hydrocarbons as the refrigerant for the air-conditioning systems.

  • PDF