• 제목/요약/키워드: Refractive Index Sensor

검색결과 93건 처리시간 0.023초

다파장 광원을 이용한 폴리머 광도파로형 SPR 센서 (The polymer waveguide type SPR sensor using a multi-wavelength light source)

  • 박창섭;염세혁;김도억;강병호;김규진;김학린;강신원
    • 센서학회지
    • /
    • 제16권6호
    • /
    • pp.401-406
    • /
    • 2007
  • In this paper, we fabricated the polymer waveguide type surface plasmon resonance (SPR) sensor using a white light source and optical spectrum analyzer (OSA). Fabricated sensor uses the principle of phase matching between evanescent wave and surface plasmon wave. According to the measuring result, the shift of resonance wavelength conducts the change of the refractive index. The proposed SPR sensor is expected to apply the integrated multichannel SPR sensor and the realtime monitoring system.

Ultraviolet Light Sensor Based on an Azobenzene-polymer-capped Optical-fiber End

  • Cho, Hee-Taek;Seo, Gyeong-Seo;Lim, Ok-Rak;Shin, Woojin;Jang, Hee-Jin;Ahn, Tae-Jung
    • Current Optics and Photonics
    • /
    • 제2권4호
    • /
    • pp.303-307
    • /
    • 2018
  • We propose a simple ultraviolet (UV) sensor consisting of a conventional single-mode optical fiber capped with an azobenzene-moiety-containing polymer. The UV light changes the dimensions of the azobenzene polymer, as well as the refractive index of the material. Incident light with a wavelength of 1550 nm was reflected at the fiber/polymer and polymer/air interfaces, and interference of the reflected beams resulted in spectral interference that shifted the wavelength by 0.78 nm at a UV input power of $2.5mW/cm^2$. The UV sensor's response to wavelength is nonlinear and stable. The response speed of the sensor is limited by detection noise, which can be improved by modifying the insertion loss of the UV sensor and the signal-to-noise ratio of the detection system. The proposed compact UV sensor is easy to fabricate, is not susceptible to electromagnetic interference, and only reacts to UV light.

결합된 플라즈몬-도파관 공진 구조로 구성된 바이오센서의 구현 (Implementation of Bio-Sensor with Coupled Plasmon-Waveguide Resonance Profile)

  • 호광춘
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.109-114
    • /
    • 2024
  • 결합된 플라즈몬-도파관 공진 (PWR) 구조에서 전파하는 TE, TM 전송 모드들의 바이오 센싱 특성을 조사하였다. 수치해석을 위하여 모드 전송선로 이론 (MTLT)을 사용되었다. 기존의 Ag-기반 표면 플라즈몬 공명 바이오센서의 감도를 향상시키기 위하여, 제안된 PWR 바이오센서는 N쌍의 MgF2-Si3N4 층으로 구성된 다층구조로 설계하였다. 그 바이오센서의 각도 감도가 광범위한 생물학적 용액 (굴절률 1.33~1.37)에 대하여 수치적으로 분석되었다. 더욱이, 암세포와 혈장 농도를 감지하는 센서의 가용성을 조사하였다. 결국, 그 결과들은 제안된 바이오센서가 소변에서 다양한 종류의 암 세포와 다양한 포도당 농도를 효율적으로 감지할 수 있음을 보여주었다.

폐암 바이오마커 검출용 나노SPR 바이오센서 (Nano SPR Biosensor for Detecting Lung Cancer-Specific Biomarker)

  • 장은윤;염세혁;엄년식;한정현;김형경;신용범;강신원
    • 센서학회지
    • /
    • 제22권2호
    • /
    • pp.144-149
    • /
    • 2013
  • In this research, we developed a biosensor to detect lung cancer-specific biomarker using Anodic Aluminum Oxide (AAO) chip based on interference and nano surface plasmon resonance (nanoSPR). The nano-porous AAO chip was fabricated $2{\mu}m$ of pore-depth by two-step anodizing method for surface uniformity. NanoSPR has sensitivity to the refractive index (RI) of the surrounding medium and also provides simple and label-free detection when specific antibodies are immobilized to the Au-deposited surface of nano-porous AAO chip. To detect the lung cancer-specific biomarker, antibodies were immobilized on the surface of the chip by Self Assembled Monolayer (SAM) method. Since then lung cancer-specific biomarker was applied atop the antibodies immobilized layer. The specific reaction of the antigen-antibody contributed to the change in the refractive index that cause shift of resonance spectrum in the interference pattern. The Limit of Detection (LOD) was 1 fg/ml by using our nano-porous AAO biosensor chip.

프리즘과 광섬유-평면도파로의 소산장 결합을 이용한 자외선 센서 (UV Sensor using Evanescent Field Coupling of Prism and Fiber-to-Planar Waveguide Coupler)

  • 조강민;윤정현;김응수;이승하;강신원
    • 센서학회지
    • /
    • 제13권5호
    • /
    • pp.350-355
    • /
    • 2004
  • A novel UV sensor was manufactured and characterized using the evanescentfield coupling between fiber-planar waveguide (PWG) coupler and prism. A spiroxazine dye was chosen as planar waveguide because its photochromic isomerization induced by UV irradiation. A novel UV sensor was proposed to measure the variation of refractive index and absorption coefficient simultaneously. The wavelength responses of these sensors by UV exposure times were measured 0.48 nm/sec, 0.757 nm/sec, and ATR output power variations were measured $-0.424{\mu}W$/sec and $-0.62{\mu}W$/sec when UV exposure power were 3 mW and 5 mW, respectively.

Gas-Flow Sensor using Optical Fiber Bragg Grating(FBG)

  • Shim, Joon-Hwan;Cho, Seok-Je;Yu, Yung-Ho;Sohn, Kyung-Rak
    • 한국항해항만학회지
    • /
    • 제32권9호
    • /
    • pp.717-722
    • /
    • 2008
  • We have proposed and demonstrated an gas-flow sensor using optical fiber bragg grating(FEG). The flow sensor has no electronics and no mechanical parts in its sensing part and the structure is th11s simple and immune to electromagnetic interference(EMI). The FEG sensor was consisted qf the sensing element and a coil heater. The metal coil was used to supply the current to the FEG. While some currents supply to the coil, the refractive index of the FEG under the coil is changed and thus the wavelength shift of fiber optic sensor was induced In this work, the wavelength shift according to flow-rate was experimentally studied and was used to evaluate the gas flow-rate in a gas tube. As a result, it was possible to measure the flow-rate in a linear range from 5 to $20{\ell}/min$ with a resolution of approximately $1{\ell}/min$ at the applied currents of 100 mA and 120 mA. The measured sensitivities were $15.3\;pm/\ell/min$ for 100 mA and $20.2\;pm/\ell/min$ for 120 mA.

금속물질에 따른 나노구조를 이용한 국소 표면 플라즈몬 공명 센서 특성 분석 (Estimation of Sensitivity Enhancements of Material-Dependent Localized Surface Plasmon Resonance Sensor Using Nanowire Patterns)

  • 안희상;안동규;송영민;김규정
    • 한국정밀공학회지
    • /
    • 제33권5호
    • /
    • pp.363-369
    • /
    • 2016
  • We explored localized plasmonic field enhancements using nanowire patterns to improve the sensitivity of a surface plasmon resonance (SPR) sensor. Two different materials, gold and silver, were considered for sample materials. Gold and silver nanowire patterns were fabricated by electron beam lithography for experimental measurements. The wavelength SPR sensor was also designed for these experiments. The material-dependent field enhancements on nanowire patterns were first calculated based on Maxwell's equations. Resonance wavelength shifts were indicated as changes in the refractive index from 1.33 to 1.36. The SPR sensor with silver nanowire patterns showed a much larger resonance wavelength shift than the sensor with gold nanowire patterns, in good agreement with simulation results. These results suggest that silver nanowire patterns are more efficient than gold nanowire patterns, and could be used for sensitivity enhancements in situations where biocompatibility is not a consideration.

Structural Analysis of a Cavitary Region Created by Femtosecond Laser Process

  • Fujii, Takaaki;Goya, Kenji;Watanabe, Kazuhiro
    • 동력기계공학회지
    • /
    • 제19권3호
    • /
    • pp.5-10
    • /
    • 2015
  • Femtosecond laser machining has been applied for creating a sensor function in silica glass optical fibers. Femtosecond laser pulses make it possible to fabricate micro structures in processed regions of a very thin glass fiber line because femtosecond laser pulses can extremely minimize thermal effects. With the laser machining to optical fiber using a single shot of 210-fs laser at a wavelength of 800 nm, it was observed that a processed region surrounded a thin layer which seemed to be a hollow cavity monitored by scanning electron microscopy (SEM). This study aims at a theoretical investigation for the processed region by using a numerical analysis in order to embed sensing function to optical fibers. Numerical methods based finite element method (FEM) has been used for an optical waveguide modeling. This report suggests two types modeling and describes a comparative study on optical losses obtained by the experiment and the numerical analysis.

구속계수와 감지도에 기반한 집적광학 바이오케미컬 센서에 적합한 수직 SOI 슬롯 광 도파로 최적화 (Optimization of vertical SOI slot optical waveguide with confinement factor and sensitivity for integrated-optical biochemical sensors)

  • 정홍식
    • 센서학회지
    • /
    • 제30권3호
    • /
    • pp.131-138
    • /
    • 2021
  • The optimization of the specifications of vertical silicon on insulator (SOI) slot optical waveguides suitable for integrated-optical biochemical sensors was performed through computational analysis of the confinement factor of the guided mode distributed in the slot in addition to analytical examination of the TE mode. The optimized specifications were confirmed based on sensitivity in terms of the change in the refractive index of the biochemical analyte. When the slot width, rail width, and height were set to 120 nm, 200 nm, and 320 nm, respectively, the confinement factor was evaluated to be about 56% and the sensitivity was at least 0.9 [RIU/nm].

금속-유기 구조체를 이용한 포토닉 크리스탈 기반의 효율적인 습도 컬러 센서 (Efficient Humidity Color Sensor Based on a Photonic Crystal with a Metal-Organic Framework)

  • 김준용;이성학;도윤선
    • 한국광학회지
    • /
    • 제29권6호
    • /
    • pp.268-274
    • /
    • 2018
  • 본 연구에서는 1차원 포토닉 크리스탈과 금속-유기 구조체 (MOF) 물질인 Hong Kong University of Science and Technology(HKUST-1)을 이용한 수분 감지 컬러 센서를 제안한다. 1차원 포토닉 크리스탈은 주기적인 굴절률 변화에 의해 포토닉 밴드갭이 존재하고, 특정한 파장 대역의 광 성분을 차단 및 반사한다. HKUST-1의 굴절률은 건조한 환경과 습한 환경에서 그 값이 서로 다르다. 여기서 우리는 포토닉 밴드갭의 유무를 활용하여 FDTD 시뮬레이션으로 센서를 설계하였다. 광학 해석 결과, 투과된 광의 색 변환보다 반사된 광의 색 변환이 우수하여 반사된 광을 이용하였다. 그리고 포토닉 밴드갭의 중심 파장이 550 nm인 경우, 건조한 환경 대비 습한 환경의 최대 피크 값이 약 9.5배로 증가했으며, 무채색에서 녹색으로 색 변환이 가능하여 센서로의 특성이 우수하였다. 본 연구 결과는 MOF 물질의 수분 감지 컬러 센서로의 활용을 제시하였으며, MOF 물질의 나노 구조 설계로 산업 디바이스로의 활용성도 확대할 것이다.