• Title/Summary/Keyword: Reformed Hydrogen

Search Result 48, Processing Time 0.03 seconds

Degradation Comparison of Hydrogen and Internally Reformed Methane-Fueled Solid Oxide Fuel Cells

  • Kim, Young Jin;Lee, Hyun Mi;Lim, Hyung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.483-488
    • /
    • 2016
  • Anode supported solid oxide fuel cells (SOFCs), consisting of Ni+YSZ anode, YSZ electrolyte, and LSM+YSZ cathode, were fabricated and constant current tested with direct internal reforming of methane (steam to carbon ratio ~ 2) as well as hydrogen fuel at $800^{\circ}C$. The cell, operated under direct internal reforming conditions, showed relatively rapid degradation (~ 1.6 % voltage drop) for 95 h; the cells with hydrogen fuel operated stably for 170 h. Power density and impedance spectra were also measured before and after the tests, and post-test analyses were conducted on the anode parts using SEM / EDS. The results indicate that the performance degradation of the cell operated with internal reforming can be attributed to carbon depositions on the anode, which increase the resistance against anode gas transport and deactivate the Ni catalyst. Thus, the present study shows that direct internal reforming SOFCs cannot be stably operated even under the condition of S/C ratio of ~ 2, probably due to non-uniform mixture (methane and steam) gas flow.

Characteristics of LPG fuel Reforming in Plasma Reformer for Hydrogen Production (수소 생성을 위한 플라즈마 개질기에서의 LPG 연료의 개질 특성)

  • Park, Yunhwan;Lee, Deahoon;Kim, Changup;Kang, Kernyong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.8-14
    • /
    • 2013
  • In this study, characteristics of the geometric design changes of plasma reformer for LPG fuelled vehicles were studied. To improve the yield of hydrogen, reformer 1st, and 2nd were designed. Secondary reformer compared to the primary reformer to increase the volume of the rear part of reformed gas having passed through the plasma and increased reaction time. To compare reforming results of two reformers, various experimental conditions such as, from partial oxidation to total oxidation conditions $O_2/C$ ratios, and total flow rate of 20, 30, 40, 50 lpm conditions, were varied. Results showed that with increasing $O_2/C$ ratios, LPG conversion rate increased, decreased hydrogen selectivity and hydrogen yield optimal point existed and secondary reformer 4.5 times larger than the primary reformer at the same flow rate to 4~14% increase in the yield of hydrogen.

Synthesis of Pitch from PFO, Byproduct of Naphtha Cracking Process Using UV Irradiation and AlCl3 Catalyst (나프타 분해공정 부산물인 PFO로부터 UV 조사와 AlCl3 촉매 첨가를 이용한 피치의 합성)

  • Jung, Min-Jung;Ko, Yoonyoung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.224-228
    • /
    • 2015
  • The carbon precursor pitch from pyrolyzed fuel oil (PFO), by-product of Naphta cracking process (NCC), was prepared through heat and UV irradiation treatments with various concentrations of $AlCl_3$, which is a new pitch preparation method. The reformed pitches were characterized by measuring their elemental composition, chemical structure of components, molecular weight distribution, and softening point. The oxygen contents of reformed pitch increased as increasing $AlCl_3$ amounts on the other hand, the carbon and hydrogen contents were not nearly changed. UV irradiated reformed pitches were composed of more aromatic carbon compounds than that of using only heat-treatment without any UV irradiation. The addition of $AlCl_3$ catalyst was ineffective on the aromaticity of reformed pitches. The softening point of prepared pitches was in the range of $103.3{\sim}168.9^{\circ}C$. Also the yield of prepared pitch increased from 48% to 80% when 5 wt% of $AlCl_3$ was added during the heat and UV irradiation reforming. It is expected that the UV irradiation reforming method can be practical and helpful to produce high yields of pitches with diverse properties.

Preparation of perovskite-based catalysts and fuel injection system for high durability of diesel reforming (디젤 개질을 위한 페로브스카이트 구조 촉매와 연료주입 시스템의 개발)

  • Rhee, Junki;Park, Sangsun;Shul, Yong-Gun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.115.2-115.2
    • /
    • 2010
  • Autothermal reforming(ATR) processes of hydrocarbon liquids such as diesel fuels are spotlighted as methods to produce hydrogen for Fuel cell. However, the use of heavy hydrocarbons as feedstocks for hydrogen production causes some problems which increase the catalyst deactivation by the carbon deposition. Coking can be inhibited by increasing the water dissociation on the catalyst surface. This results in catastrophic failure of whole system. Performance degradation of diesel autothermal reforming leads to increase of undesirable hydrocarbons at reformed gases and subsequently decrease the performance. In this study, perovskite-based catalysts were investigated as alternatives to substitute the noble metal catalyst for the ATR of diesel. The investigated perovskite structure was based on LaCrO3. and metals were added at the A-site to enhance oxygen ion mobility, transition metals were doped on the B-site to enhance the reformation. Substituted Lanthanum chromium perovskite were made by aqueous combustion synthesis, which can produce high surface area. And for the homogeneous fuel supply, we made ultrasonic injection system for reforming. We compared durability of evaporation system and ultrasonic system for fuel injection.

  • PDF

A Study on the Heat Accumulation Performance of Ceramic Honeycomb located on the Flat Burner (Flat Burner 위에 설치된 Ceramic Honeycomb의 축열성능 연구)

  • Park, Jae-Min;Heo, Su-Bin;Yoon, Bong-Seock;Lee, Do-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.244-249
    • /
    • 2012
  • Recently energy crisis and environmental pollution using fossil fuel became social issue. The Fuel Cell, one of the new and renewable energy has great advantage for the former mentioned problems. The PEM Fuel Cell needs highly purified hydrogen for fuel, in many cases CH4 was reformed to H2 basically using steam reforming. The purpose of this paper is to understand the probability of ceramic honeycomb to apply the combustor of STR. We tested the heat accumulation performance of ceramic honeycomb by change of excess air ratio. The results were suitable for our purpose and also these results can be used to make high temperature air at mild combustion field.

Perfonnance Evaluation of Single Cell and Stack of PolymerElectrolyte Fuel Cell by Using Transfer Printing Technique

  • KIM, CHANG SOO;CHUN, YOUNG-GAB;PECK, DONG-HYUN;YANG, TAE-HYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.1
    • /
    • pp.19-27
    • /
    • 2000
  • The polymer electrolyte membrane fuel cell (PEMFC) system was developed. In order to enhance the performance of membrane electrode assembly (MEA), the transfer printing method of the electrocatalyst layer on membrane was developed. The $H_2/O_2$ single cell with an electrode area of $50cm^2$ was fabricated and tested using 20 wt.% Pt/C as an electrocatalyst and the commercial and hand-made MEA such as Nafion 115, Hanwha, Dow, Flemion T and Gore Select. The 100-cell PEMFC stack with an active electrode area of $300cm^2$ was designed and fabricated using 40 wt.% Pt/C and 30 wt.% Pt-Ru/C as a cathode and anode electrocatalysts, respectively. The performance of PEMFC system was obtained to be 7kW (250A at 28V) and 3.5kW (70A at 50V) at $80^{\circ}C$ by flowing $H_2/air$ and methanol reformed fuel gas/air, respectively.

  • PDF

Effect of Carbon Capture Using Pre-combustion Technology on the Performance of Gas Turbine Combined Cycle (연소전 처리를 이용한 탄소포집이 가스터빈 복합화력 플랜트의 성능에 미치는 영향)

  • YOON, SUKYOUNG;AHN, JIHO;CHOI, BYEONGSEON;KIM, TONGSEOP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.571-580
    • /
    • 2016
  • In this paper, performance of the gas turbine combined cycle(GTCC) using pre-combustion carbon capture technology was comparatively analysed. Steam reforming and autothermal reforming were used. In the latter, two different methods were adopted to supply oxygen for the reforming process. One is to extract air form gas turbine compressor (air blowing) and the other is to supply oxygen directly from air separation unit ($O_2$ blowing). To separate $CO_2$ from the reformed gas, the chemical absorption system using MEA solution was used. The net cycle efficiency of the system adopting $O_2$ blown autothermal reforming was higher than the other two systems. The system using air blown autothermal reforming exhibited the largest net cycle power output. In addition to the performance analysis, the influence of fuel reforming and carbon capture on the operating condition of the gas turbine and the necessity of turbine re-design were investigated.

Partial Oxidation Reformer in a Plasma-Recuperative Burner (플라즈마-축열버너 부분산화 개질장치)

  • AN, JUNE;CHUN, YOUNG NAM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.1
    • /
    • pp.68-76
    • /
    • 2021
  • Climate change problems occur during the use of fossil fuel and the process of biogas production. Research continues to convert carbon dioxide and methane, the major causes of climate change, into high-quality energy sources. in order to present the performance potential for the novel plasma-recuperative burner reformer, the reforming characteristics for each variable were indentified. The optimal operating condition of was an O2/C ratio of 1.0 and a total gas supply of 20 L/min. At this time, CH4 conversion was 64%, H2 selectivity was 39%, and H2/CO ratio was 1.13, which were the results applicable to the solid oxide fuel cell fuel stack for RPG, or Residential Power Generator. Recirculation of reformed gas increases the amount of H2 and CO, which are combustible gases, especially the amount of H2. As a result, the H2 selectivity is improved, and high-quality gas can be produced.

Analysis of CO2 Emission Depending on Hydrogen Production Methods in Korea (국내 수소 생산에 따른 CO2 발생량 분석)

  • Han, Ja-Ryoung;Park, Jinmo;Kim, Yohan;Lee, Young Chul;Kim, Hyoung Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.2
    • /
    • pp.1-8
    • /
    • 2019
  • Because of environmental pollution problem, interests in hydrogen energy has been concentrating sharply. Especially in Korea, the market related with fuel cell vehicles and hydrogen refueling stations is increasing actively under the government-led. However, the actual contributions to environmental improvement effect of hydrogen energy is required to be evaluated with representing reality. In this sense, lots of conventional analyzing tools have some limitations to adapt in Korea's situation directly. It is caused by the differences of raw energy market between the US and Korea. That is, most of analytic tools are developed by representing energy market of the US, where can produce variety of raw feed energy sources. Therefore, in this paper, we propose mass balance based numerical analyzing method, which is suitable for the actual hydrogen production process in Korea for exact evaluation of $CO_2$ emission amount in this country. Using proposed method, we has demonstrated reformed hydrogen from natural gas, LPG and naphtha, electrolysis-based hydrogen, and COG-based hydrogen. Furthermore, with the comparison of GREET program analysis results, robustness of numerical analysis method is demonstrated.

Study of performance of a stack in the presence of CO and air (연료전지의 CO 피독 및 회복에 관한 연구)

  • Kim, Hee-Su;Kim, Dong-Chan;Han, Ji-Hee;Lee, Ho-Jun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.180-183
    • /
    • 2007
  • CO in the reformed gas for proton exchange membrane fuel cell(PEMFC) has a strong tendency to adsorb on the surface of the catalyst and thus to block the sites that hydrogen needs for reactions. Even part per million levels of CO can cause serious poisoning. This CO poisoning can overcome to bleed trace amounts of air into the anode. In this study, we indicated the alteration of stack performance in various CO concentration and then bled a small amount of air. The performance of stack was reduced by increasing CO amount, and recovered by air bleeding. But the air-bleeding have an impact on performance of anode should be further explored.

  • PDF