DOI QR코드

DOI QR Code

Analysis of CO2 Emission Depending on Hydrogen Production Methods in Korea

국내 수소 생산에 따른 CO2 발생량 분석

  • 한자령 (한국가스공사 가스연구원) ;
  • 박진모 (한국가스공사 가스연구원) ;
  • 김요한 (한국가스공사 가스연구원) ;
  • 이영철 (한국가스공사 가스연구원) ;
  • 김형식 (한국가스공사 가스연구원)
  • Received : 2018.11.26
  • Accepted : 2019.03.14
  • Published : 2019.04.30

Abstract

Because of environmental pollution problem, interests in hydrogen energy has been concentrating sharply. Especially in Korea, the market related with fuel cell vehicles and hydrogen refueling stations is increasing actively under the government-led. However, the actual contributions to environmental improvement effect of hydrogen energy is required to be evaluated with representing reality. In this sense, lots of conventional analyzing tools have some limitations to adapt in Korea's situation directly. It is caused by the differences of raw energy market between the US and Korea. That is, most of analytic tools are developed by representing energy market of the US, where can produce variety of raw feed energy sources. Therefore, in this paper, we propose mass balance based numerical analyzing method, which is suitable for the actual hydrogen production process in Korea for exact evaluation of $CO_2$ emission amount in this country. Using proposed method, we has demonstrated reformed hydrogen from natural gas, LPG and naphtha, electrolysis-based hydrogen, and COG-based hydrogen. Furthermore, with the comparison of GREET program analysis results, robustness of numerical analysis method is demonstrated.

근래 환경 문제가 이슈화됨에 따라, 수소 에너지에 대한 관심 역시 빠르게 집중되고 있다. 특히 국내에서는 수소 에너지의 보급을 위하여 정부 주도 하, 수소전기차 및 수소충전소의 확산이 탄력을 받고 있다. 그러나 수소 에너지의 도입 취지에 부합하는, 실질적인 국내 환경성에 대한 기여도가 평가되어야 하지만, 기존 $CO_2$ 배출량 분석 방법의 대부분은 미국의 에너지 환경을 대표하여 개발되었으므로, 국내 현실에 그대로 적응하기에는 한계가 존재한다. 따라서 본 논문에서는 국내에서 수소 생산 시 배출되는 $CO_2$ 배출량을 평가하는 방식으로, 물질 수지 기반의 수치 계산 분석을 제안한다. 제안한 방법을 바탕으로 천연가스, LPG, 나프타를 원료로 개질 반응 및 전기분해, COG를 활용한 수소 생산 시 국내에서 발생하는 $CO_2$ 배출량을 분석하였다. 또한, 해당 결과를 GREET 프로그램 분석 결과를 비교하여 제안한 방법의 신뢰성을 확인해보았다.

Keywords

References

  1. R. Jeremy, The Hydrogen Economy : The Creation of the Worldwide Energy Web and the Redistribution of Power on Earth, (2003)
  2. G. W. Bang, "Problems in Hydrogen Economy and the Need for the Development of New Energy Source", Journal of the Korean Society of Jungshin Science, 13, 73-80, (2009)
  3. K. Oshiro, T.Masui, "Diffusion of low emission vehicles and their impact on $CO_2$ emission reduction in Japan", Energy Policy, 81, 215-225, (2015) https://doi.org/10.1016/j.enpol.2014.09.010
  4. Japan's Ministry of Economy, Trade and Industry, The Strategic Roadmap for Hydrogen and Fuel Cell, (2016)
  5. Hydrogen Council, How hydrogen empowers the energy transition, (2017)
  6. J. D. Holladay, J. Hu, D. L. King, Y. Wang, "An overview of hydrogen production technologies", Catalysis Today, 137, 244-260, (2009)
  7. P. Nikolaidis, A. Poullikkas, "A comparative overview of hydrogen production processes", Renewable and Sustainable Energy Reviews, 26, 597-611, (2017)
  8. U.S. Department of ENERGY, Energy Efficiency & Renewable Energy, Fuel cell technologies office, Hydrogen Production, (2014)
  9. A. Lowenthal, California Senate Bill 1505, (2006)
  10. California Air Resources Board, Annual Evaluation of Fuel Cell Electric Vehicle Deployment and Hydrogen Fuel Station Network Development, (2017)
  11. Ministry of Trade, Industry and Energy, The 3rd Environmental-freindly Automobile Development and Distribution Plan, (2015)
  12. Joint Ministry, Comprehensive Measures for Fine Dust Control, (2017)
  13. M. Kim, E. Yoo, H. Song, "Well-to-Wheel Greenhouse Gas Emissions Analysis of Hydrogen Fuel Cell Vehicle-Hydrogen Produced by Naphtha Cracking", Transactions of KSAE, 25, 157-166, (2017) https://doi.org/10.7467/KSAE.2017.25.2.157
  14. www.index.go.kr/portal/main/EachDtlPageDetail.do?idx_cd=1464 (e-나라지표, 국가온실가스 배출현황, 의미분석)
  15. IPCC, 2016 IPCC Guildelines for National Greenhouse Gas Inventories, (2007)
  16. TOYOTA MOTOR CORPORATION, Well-to-Wheel Analysis of Greenhoues Gas Emissions of Automotive Fuels in the Japanese Context, (2004)
  17. Joao Miguel Monterio Marcos, Modelling of Naphtha Cracking for Olefin Production, TECNICO LISBOA, (2016)
  18. L. D. S. Munoz, A. Bergel, D. Feron, R. Basseguy, "Hydrogen Production by Electrolysis of a Phosphate Solution on a Satainless Steel Cathode", International Journal of Hydrogen Energy, 8561-8568, (2010) https://doi.org/10.1016/j.ijhydene.2010.05.101
  19. EIA Annual Energy Outlook, (2016)
  20. Korea Electric Power Corporation, Statistics of Electric Power in Korea, (2017)