DOI QR코드

DOI QR Code

Synthesis of Pitch from PFO, Byproduct of Naphtha Cracking Process Using UV Irradiation and AlCl3 Catalyst

나프타 분해공정 부산물인 PFO로부터 UV 조사와 AlCl3 촉매 첨가를 이용한 피치의 합성

  • Jung, Min-Jung (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Ko, Yoonyoung (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 정민정 (충남대학교 바이오응용화학과) ;
  • 고윤영 (충남대학교 바이오응용화학과) ;
  • 이영석 (충남대학교 바이오응용화학과)
  • Received : 2015.02.24
  • Accepted : 2015.03.11
  • Published : 2015.04.10

Abstract

The carbon precursor pitch from pyrolyzed fuel oil (PFO), by-product of Naphta cracking process (NCC), was prepared through heat and UV irradiation treatments with various concentrations of $AlCl_3$, which is a new pitch preparation method. The reformed pitches were characterized by measuring their elemental composition, chemical structure of components, molecular weight distribution, and softening point. The oxygen contents of reformed pitch increased as increasing $AlCl_3$ amounts on the other hand, the carbon and hydrogen contents were not nearly changed. UV irradiated reformed pitches were composed of more aromatic carbon compounds than that of using only heat-treatment without any UV irradiation. The addition of $AlCl_3$ catalyst was ineffective on the aromaticity of reformed pitches. The softening point of prepared pitches was in the range of $103.3{\sim}168.9^{\circ}C$. Also the yield of prepared pitch increased from 48% to 80% when 5 wt% of $AlCl_3$ was added during the heat and UV irradiation reforming. It is expected that the UV irradiation reforming method can be practical and helpful to produce high yields of pitches with diverse properties.

나프타 분해공정에서 부산물로 발생하는 분해연료오일을 이용하여 열처리 및 UV 조사 시 다양한 농도의 $AlCl_3$을 첨가하여 새로운 방법으로 탄소전구체 피치를 제조하였다. 개질된 피치는 원소 분석, 화학 구조, 분자량 분포 및 연화점을 분석하여 특성평가를 하였다. 개질된 피치의 산소 함량은 $AlCl_3$의 첨가량이 증가할수록 증가한 반면 그 탄소 및 수소 함량은 거의 변화하지 않았다. UV 조사 개질피치는 열 개질만 된 피치보다 더 많은 방향족 탄소화합물로 이루어져 있었다. $AlCl_3$ 촉매첨가는 개질된 피치의 방향족화도에 큰 영향을 미치지 않았다. 제조된 피치의 연화점은 $103.3{\sim}168.9^{\circ}C$ 범위를 나타내었다. 또한 5 wt%의 $AlCl_3$를 첨가하여 UV 조사 개질된 피치의 수율은 48%에서 80%로 증가하였다. 이것을 통하여 UV 조사 개질 방법은 다양한 특성을 갖는 고수율의 피치를 제조를 위한 실용적이고 유용한 방법으로 여겨진다.

Keywords

References

  1. Y. S. Ko, The present and future of Carbon materials, Ceramist, 9, 18-31 (1994).
  2. U. Meier, Carbon Fiber-Reinforced Polymers: Modern Materials in Bridge Engineering, Struct. Eng. Int., 2, 7-12 (1992). https://doi.org/10.2749/101686692780617020
  3. S. Mohammadi, F. AfsharTaromi, H. Shariatpanahi, J. Neshati, and M. Hemmati, Electrochemical and anticorrosion behavior of functionalized graphite nanoplatelets epoxy coating, J. Ind. Eng. Chem., Doi:http://dx.doi.org/10.1016/j.jiec.2014.01.011.
  4. W. Dong, H. C. Liu, S. J. Park, and F. L. Jin, Fracture toughness improvement of epoxy resins with short carbon fibers, J. Ind. Eng. Chem., 20, 1220-1222 (2014). https://doi.org/10.1016/j.jiec.2013.06.053
  5. C. B. Scott and D. B. Fischbach, Diamagnetic studies on asprocessed carbon fibers, Appl. Phys., 47, 5329-5335 (1976). https://doi.org/10.1063/1.322556
  6. Y. D. Park, Production Technology of Artificial Graphite Electrodes, Polym. Sci. Technol., 8, 155-162 (1997).
  7. R. Menendez, M. Granda, and J. Bermejo, Introduction to Carbon Technolgies, eds. H. March, E. A. Heintz, and F. Rodriguez-Reinoso, 461-490, University of Alicante, Spain (1997).
  8. E. I. Shobert, Petroleum Derived Carbon, eds. M. L. Deriney, and T. M. O'Grady, 91-109, American Chemical Society, Washington D. C., USA (1976).
  9. V. J. Mayani, S. V. Mayani, Y. Lee, and S. K. Park, A non-chromatographic method for the separation of highly pure naphthalene crystals from pyrolysis fuel oil, Sep. Purif. Technol., 80, 90-95 (2011). https://doi.org/10.1016/j.seppur.2011.04.013
  10. J. Alcaniz-Monge, D. Cazorla-Amoros, A. Linares-Solano, A. Oya, A. Sakamoto, and K. Hosm, Preparation of general purpose carbon fibers from coal tar pitches with low softening point, Carbon, 35, 1079-1087 (1997). https://doi.org/10.1016/S0008-6223(97)00064-X
  11. S. V. Mayani, V. J. Mayani, J. Y. Lee, S. H. Ko, S. K. Lee, and S. W. Kim, Preparation of multi metal-carbon nanoreactors for adsorption and catalysis, J. Int. Adsorpt. Soc., 19, 251-257 (2013). https://doi.org/10.1007/s10450-012-9447-6
  12. J. H. Oh, J. Y. Lee, S. H. Kang, T. H. Rhee, and S. K. Ryu, Characterization of Heat Reformed Naphtha Cracking Bottom Oil Extracts, Carbon Lett., 9, 289-293 (2008). https://doi.org/10.5714/CL.2008.9.4.289
  13. M. C. Kim, S. Y. Eom, S. K. Ryu, and D. D. Edie, Reformation of Naphtha Cracking Bottom Oil for the Preparation of Carbon Fiber Precursor Pitch, Korean Chem. Eng. Res., 43, 745-750 (2005).
  14. J. Kim, S. H. Lee, and Y.-S. Lee, Preparation of Pitch for Melt-electrospinning from Naphtha Cracking Bottom Oil, Appl. Chem. Eng., 24, 402-406 (2013).
  15. J. Y. Jung and Y. S. Lee, Preparation of pitch from pyrolized fuel oil by electron beam radiation and its melt-electrospinning property, Carbon Lett., 15, 129-135 (2014). https://doi.org/10.5714/CL.2014.15.2.129
  16. C. Decker, The Use of UV Irradiation in Polymerization, Polym. Int., 45, 133-141 (1998). https://doi.org/10.1002/(SICI)1097-0126(199802)45:2<133::AID-PI969>3.0.CO;2-F
  17. C. Fischbach, J. Tessmar, A. Lucke, E. Schnell, G. Schmeer, T. Blunk, and A. Gopferich, Does UV irradiation affect polymer properties relevant to tissue engineering?, Surf. Sci., 491, 333-345 (2001). https://doi.org/10.1016/S0039-6028(01)01297-3
  18. ASTM D3104, Standard Test Method for Softening Point of Pitches (Mettler Softening Point Method).
  19. K. S. Yang, Y. O. Choi, Y. M. Kim, S. H. Park, C. M. Yang, Y. J. Kim, and S. Y. Soh, Preparation of Carbon Fibers from Precursor Pitches Synthesized with Coal Tar or Petroleum Residue Oil, Fiber. Polym., 1, 97-102 (2000). https://doi.org/10.1007/BF02875192
  20. Y. Cheng, T. Li, X. Hou, D. Jing, Q. Zhuang, and T. Zhao, Effects of $AlCl_{3}$-NaCl Content on the Formation of Mesocarbon Microbeads, Int. J. Chem. React. Eng., 8, 1-12 (2011).
  21. H. A. Akrami, M. F. Yardim, A. Akar, and E. Ekinci, FT-IR characterization of pitches derived from Avgamasyaasphaltite and Raman-Dincer heavy crude, Fuel, 76, 1389-1394 (1997). https://doi.org/10.1016/S0016-2361(97)00100-2
  22. A. H. Wazir and L. Kakakhel, Preparation and characterization of pitch-based carbon fibers, New Carbon Mater., 24, 83-88 (2009). https://doi.org/10.1016/S1872-5805(08)60039-6
  23. Y. Yamada, H. Honda, and T. Abe, Production of Binder Pitchfrom Petroleum Vacuum Residue, J. Japan Petrol., 18, 758-762 (1979).
  24. Y. Yamada, Characterization of Heavy Oils and its Application,J. Japan Petrol., 24, 74-80 (1981).
  25. W. G. Kim and J. H. Ryu, The Change of Physical Propemes of Epoxy Molding Compound According to the Change of Softening Point of o-Cresol Novolac Epoxy Resin, J. Korean Chem. Soc., 40, 81-86 (1996).
  26. M. I. Lomaev, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, D. V. Shitts, and M. V. Erofeev, Excilamps: efficient sources of spontaneous UV and VUV radiation, Phys. Usp., 46, 193-209 (2003). https://doi.org/10.1070/PU2003v046n02ABEH001308
  27. L. F. King, W. D. Robertson, and S. C. Truman, Shaped carbon articles and method of making, US Patent, 3,316,183 (1967).

Cited by

  1. 석유계 바인더 피치의 β-resin이 탄소블럭의 밀도에 미치는 영향 vol.28, pp.4, 2015, https://doi.org/10.14478/ace.2017.1035
  2. 열처리 온도에 따른 열분해 연료유 내 휘발유분 및 잔류 중질유분의 구조 분석 vol.30, pp.3, 2015, https://doi.org/10.14478/ace.2019.1010
  3. 산화 공정이 석유계 등방성 피치의 열거동 특성에 미치는 영향 vol.31, pp.1, 2015, https://doi.org/10.14478/ace.2019.1101