• Title/Summary/Keyword: Reflection sound

Search Result 166, Processing Time 0.022 seconds

THE REFLECTION OF SOLUTIONS OF HELMHOLTZ EQUATION AND AN APPLICATION

  • Yun, Ki-Hyun
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.427-436
    • /
    • 2001
  • It is the purpose of this paper to study the reflection of solutions of Helmholtz equation with Neumann boundary data. In detail let u be a solution of Helmholtz equation in the exterior of a ball in R$^3$ with exterior Neumann data ∂(sub)νu = 0 on the boundary of the ball. We prove that u can be extended to R$^3$ except the center of the ball. As a corollary, we prove that a sound hard ball can be identified by the scattering amplitude corresponding to a single incident direction and as single frequency.

  • PDF

Relation between Acoustical Parameters and Ensemble Performance on a Concert Hall Stage (콘서트홀에서 음향지표와 앙상블 연주와의 상관관계)

  • Kim, Yong-Hee;Lee, Pyoung-Jik;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.975-978
    • /
    • 2007
  • This paper investigates stage acoustics in concert halls for ensemble performance in terms of stage support parameters. A concert hall with large stage area was selected. Objective measurements were carried out according to Gade's methods for investigating stage support (ST1). The sound field on the stage was evaluated using stage and audience acoustical parameters. According to the positions at stage, different acoustical characteristics were found. Higher ST1 and lower $IACC_{E3}$ were measured near side and rear stage walls. In case of conductor/soloist vs. orchestra player, objective measurement of acoustical parameters shows that early sound fields depend on the source-receiver distance but late sound fields depend on the location of side and rear walls. In addition, in-situ evaluation of the trio instrumentalists was carried out. Results show that ensemble is favored by higher early reflection of sounds and sound diffusion affecting ‘blending’ of their performance.

  • PDF

A Study on the Acoustic Characteristics and Absorption Performance Improvement Method of Double Layered Sound Absorption System Using High Density Polyester Absorbing Materials (고밀도 폴리에스터 흡음재를 이용한 이중층 흡음시스템의 음향특성 및 흡음성능 향상 방안에 관한 연구)

  • Yoon, Je-Won;Jang, Kang-Seok;Cho, Yong-Thung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.3
    • /
    • pp.331-339
    • /
    • 2016
  • To improve the acoustic performance of sound absorbing materials, the thickness of the material should be increased or the sound absorbing material having an irregular surface shape should be used. In this study, the acoustic characteristics and methods to improve the acoustic performance of a sound absorbing system equipped with double layered polyester sound absorbing materials were investigated. The numerical model was set up and the results obtained from the model were compared with the actual measurement data. And, strategies to improve the acoustic performance of sound absorbing systems with double layered sound absorbing materials made of polyester with different configuration were shown. So, this study is expected to be usefully used at sites that require high acoustic absorption performance with minimal installation thickness to reduce sounds reflection in narrow spaces such as interior of subway tunnels or in noise barriers installed adjacent to rails.

Reduced Raytracing Approach for Handling Sound Map with Multiple Sound Sources, Wind Advection and Temperature

  • Jong-Hyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.55-62
    • /
    • 2023
  • In this paper, we present a method that utilizes geometry-based sound generation techniques to efficiently handle multiple sound sources, wind turbulence, and temperature-dependent interactions. Recently, a method based on reduced raytracing has been proposed to update the sound position and efficiently calculate sound propagation and diffraction without recursive reflection/refraction of many rays, but this approach only considers the propagation characteristics of sound and does not consider the interaction of multiple sound sources, wind currents, and temperature. These limitations make it difficult to create sound scenes in a variety of virtual environments because they only generate static sounds. In this paper, we propose a method for efficiently constructing a sound map in a situation where multiple sounds are placed, and a method for efficiently controlling the movement of an agent through it. In addition, we propose a method for controlling sound propagation by considering wind currents and temperature. The method proposed in this paper can be utilized in various fields such as metaverse environment design and crowd simulation, as well as games that can improve content immersion based on sound.

An Accuracy Improvement Method on Acoustic Source Localization Using Ground Reflection Effect (지면반사효과를 이용한 폭발 소음원의 위치 추정 정밀도 향상법)

  • Go, Yeong-Ju;Choi, Donghun;Lee, Jaehyung;Choi, Jong-Soo;Ha, Jae-Hyoun;Na, Taeheum
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.69-74
    • /
    • 2016
  • A technique for improving estimation accuracy is introduced in order to locate the impact position of artillery shell during the weapon scoring test. Study on localization of impacts using acoustic measurement has been conducted and the usability of sensor array is verified with experiments. When the blast occurs above the ground in the firing range, the acoustic sensor above the ground can measure the directly propagated sound with the ground-reflected one. In this study, a method for reducing estimation error by using the reflection signal measurements based on the time difference of arrival method. Considering the reflection sound works as same as placing a virtual sensor symmetrically through the ground. This idea enables a virtual three-dimensional array configuration with a two-dimensional plane array above the ground as such. The time difference between the direct and the reflected propagations can be estimated using cepstrum analysis. Performance test has been made in the simulation experiment in the football size area.

Leakage noise detection using a multi-channel sensor module based on acoustic intensity (음향 인텐시티 기반 다채널 센서 모듈을 이용한 배관 누설 소음 탐지)

  • Hyeonbin Ryoo;Jung-Han Woo;Yun-Ho Seo;Sang-Ryul Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.414-421
    • /
    • 2024
  • In this paper, we design and verify a system that can detect piping leakage noise in an environment with significant reverberation and reflection using a multi-channel acoustic sensor module as a technology to prevent major plant accidents caused by leakage. Four-channel microphones arranged in a tetrahedron are designed as a single sensor module to measure three-dimensional sound intensity vectors. In an environment with large effects of reverberation and reflection, the measurement error of each sensor module increases on average, so after placing multiple sensor modules in the field, measurement results showing locations with large errors due to effects such as reflection are excluded. Using the intersection between three-dimensional vectors obtained from several pairs of sensor modules, the coordinates where the sound source is located are estimated, and outliers (e.g., positions estimated to be outside the site, positions estimated to be far from the average position) are detected and excluded among the points. For achieving aforementioned goal, an excluding algorithm by deciding the outliers among the estimated positions was proposed. By visualizing the estimated location coordinates of the leakage sound on the site drawing within 1 second, we construct and verify a system that can detect the location of the leakage sound in real time and enable immediate response. This study is expected to contribute to improving accident response capabilities and ensuring safety in large plants.

Implementation of Digital Hearing Aid Using Bluetooth Audio Digital Signal Processor

  • Choi, Mi-Lim;Ahn, Tae-hyun;Paik, Nam-Chil;Kwon, Young-Man;Lim, Myung-Jae;Chung, Dong-Kun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.58-63
    • /
    • 2017
  • The sound we hear is transmitted through the atmosphere. However, both the sound we want to hear and the surrounding sound are mixed, and noise is generated, and the sound is not clearly transmitted due to factors such as distance. In particular, in closed spaces like buildings, it is often difficult to hear sounds from outside because of the sound of reflection. People with hearing impairments, such as the elderly and the deaf, have a hard time hearing the sounds they want to hear. Thus, we are developing a hearing aid that can detect radio waves. To this end, we propose the development of a hearing aid that uses FM radio and Bluetooth. These devices are expected to be useful not only for the elderly and the deaf but also in situations where information is transmitted to a large number of people, such as students and tourists, in a large space. The main purpose of this device is to enable users to hear sound correctly without blind spots.

A Study on the improvement of reverberation characteristics using tapped and nested-allpass delay line (Tapped and nested-allpass delay line을 이용한 잔향특성 개선에 관한 연구)

  • Yoon, Jae-Yeun;Park, Jun-Sun;Jin, Yong-Ok
    • Journal of Broadcast Engineering
    • /
    • v.12 no.1 s.34
    • /
    • pp.28-40
    • /
    • 2007
  • In this paper, we proposes an idea for improved sound characteristic which decreasing a problem in previous reverberation algorism structure. To later reflection sound, proposed new reverberation structure, using a lopped and nested all-pass delay line, and it is designed to improve an natural concert hall sound. In addition, In order to have best imaginary sound effect, we extracted the factors by controlling each delay line's delay time, and we realized a proposed new algorithm by using general-purpose DSP. Through several experimental cases, we observed better effect on improvement of linear flatten and reverberation density and decreasing about colorlessness and non-linear sound at previous proposed model about impulse input.

Acoustic Model-Based Filter Structure for Synthesizing Speech Signals

  • Lim, Il-Taek;Lee, Byeong-Gi
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.1021-1026
    • /
    • 1994
  • This paper proposes a filter structure suitable for speech synthesis applications. We first derive the lossy pole-zero model by employing the wave digital filter(WDF) adaptor formula, and by converting the fixed termination value - 1 into a loss factor $\mu$c$\in$(-1, 1). Then we discuss how to determine the reflection We employ the Durbin's method in estimating the numerator polynomial of the lossy pole-zero transfer function from the given speech sound, and then apply the step-down algorithm on the numerator to extract the reflection coefficients of the closed-termination tract. For determining the reflection coefficients of the other parts we employ a pre-calculated pole-estimator polynomial.

  • PDF