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ABSTRACT This paper proposes a filter structure suitable for speech synthesis applications.
We first derive the lossy pole-zero model by employing the wave digital filter(WDF) adaptor
formula, and by converting the fixed termination value —1 into a loss factor u§ € (—1,1). Then
we discuss how to determine the reflection We employ the Durbin’s method in estimating the
numerator polynomial of the lossy pole-zero transfer function from the given speech sound, and
then apply the step-down algorithm on the numerator to extract the reflection coefficients of
the closed-termination tract. For determining the reflection coefficients of the other parts we
employ a pre-calculated pole-estimator polynomial.

1. INTRODUCTION

The linear predictive coding{LPC) technique widely used in the area of speech analysis and
synthesis is connected with the all-pole type digital filters. It is derived from the acoustic tube
modeling of human vocal tract, ané) assumes that during the pronunciation the velum is closed
and the sound wave proceeds only through the oral tract. Since the existence of the nasal tract is
ignored in its assumption, the resulting all-pole type transfer functions can not properly handle
some speech signals such as the nasal sounds. Therefore a considerable amount of efforts has
followed for the pole-zero type modeling of speech signals [1], E] All these methods, however,
are common in that they are signal-based, not acoustic model-based.

Recently, a new pole-zero modeling was reported acoustic model-based, which brought about
a pole-zera type generalization of the all-pole type LPC modeling [3], {4). In this approach,
the nasal tract as well as the oral tract was taken into consideration, and an acoustic model-
based pole-zero type transfer function was derived, which includes the LPC all-pole filter as a
special case. The derived pole-zero type transfer function, however, has a limitation caused by
the losslessness assumption. It assumed a lossless model, thus neglecting acoustic phenomena
such as friction, viscosity, and heat conduction within the vocal tract. As a consequence, the
numerator of the transfer function is forced to be symmetric, which limits the degree of freedom
in practical modeling. Therefore a lossy pole-zero modeling is called for that can remove such
limitation, yet preserving the characteristics of an acoustic model-based generalization. In this
paper we will work on this lossy pole-zero modeling, deriving a pole-zero filter which is most
suitable for speech synthesis applications.

2. REVIEW OF LOSSLESS POLE-ZERO MODELING

We first briefly review the lossless pole-zero modeling for reference in discussing the lossy mod-
eling. We denote by u,,(z,?) and pn(z,?) respectively the volume velocity and the acoustic
pressure of point z within section m at time ¢. These continuous-time signals are then sampled
into discrete-time signals. The configuration of the generalized vocal tract model is as shown
in Fig. 1. It consists of three branches — — the pharynz, the nasal tract, and the oral tract. In
the figure the oral tract is drawn with closed termination to indicate that it forms an oral cavity
when pronouncing the nasal sounds. The three branches respectively consist of L+1, M, and N
sections. A,, denotes the cross-sectional area of section m; > and U, denote the z-transformed
volume velocity of section m respectively in the forward and the backward directions; and the
superscript “c” indicates that the corresponding variables and constants belong to the “closed”
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tract. We introduce the following definitions!
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R(z) = oCx._,(2), (2¢)
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B(z) = C{_4(2) ~ Cx_s(2). (6)

3. DERIVATION OF FILTER STRCTURE FOR SPEECH SYNTHESIS APPLICATION

Two-pair shown in Fig. 2(a) represents the generalized vocal tract system in compliance with
(6), where

w9 = e 1 200l 24 5) 96

PR N S ] o
In mathematical expressions,
| Aiae | =a-on@ [ 6] (®)
for the chain matrix [(z). If we define the chain matrices I, z) and I(2) respectively by
H(n.-,z) = &), (9)
() = 55 | ) 300 ) (10)

we obtain, by (11) and (12), the expression

M(2) = Tuagsz, DMpsaes2o1,2) - Tipuat s () Mo, ) - M, (L, 2). (1)
'In [4], w and —Cpy_,(#) are used in place of ¢ and Cj;_,{z), respectively.
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A two-pair characterized by the chain matrix II{s;, z) has the signal flowgraph shown in Fig. 3.
We combine (4), (8) and (14), to get

1 —(1-0)C(2z -0
a(s) = 1= [ 1 (dc(z} (2) (1~ o) C() ] (12)
where
C(ay= Zil?), (13)
C;—l(z)

Then it i8 not difficult to show that the chain matrix IIp(z) in (16) can be realized as shown
in Fig. 4(a), where the rectangular block corresponds to the three-port series wave adaptor{7]
symbolized in Fig. 4(b). We also have

o = Ry_y/(Rm—1 + Riy_y). (14)

Fq. (3) can be arranged into the expression

[ otey | =metar | VR ] 09
for the chain matrix Ilg{z) defined by
lc(z) = O{pfy .1, 2) - - W{psg, 2)T(p5, 2) (16)

with the value u§ = —1. Hence C(z) is realized as in Fig. 5. The parameter u§ = —1 in the
last two-pair in (20) indicates that the corresponding termination is completely closed. With
#§ = —1 we can easily deduce from (3) the relation Cy_,(2) = 2N C¥_,(27"), and in view of
(8) we can confirm the symmetry B(z~') = B(z). This means that all zeros of H(z) are located
either in quad or on the unit circle in the z-plane. In general, H(z) with symmetric B(z) is
not well-suited for modeling of speech signals, since the symmetry brings about too strong a
constraint in the modeling. In fact, any value of p§ can serve as the objected parameter as
long as it lies within the open interval (~1, 1). This new parameter uS € g—l, 1) breaks the
symmetry that used to reside in the numerator of the existing lossless model, thus allowing for
more freedom in modeling of speech signals. If we combine the three building blocks in Figs. 3
to § in accordance with the expression ﬂS), we obtain the signal flowgraph of the finalized lossy
pole-zero model shown in Fig. 6.

Note that in case 0 = 0 the series adaptor becomes a direct connection and Hp(z) in (16)
becomes an identity matrix, thus making II(2) in (15) a chain matrix for an all-pole two-pair.
Therefore the transfer function becomes pole-zero when 0 < ¢ < 1, and becomes all-pole when
o = 0. Furthermore, it becomes lossy when —1 < u§ < 1, and becomes lossless when ug = —1.
The resulting signal flowgraph is, therefore, of a general form including most possible cases as
well as the existing Gray-Markel all-pole filter. Hence proposed the signal flowgraph can best
serve as a speech synthesis filter.

4. EVALUATION OF REFLECTION COEFFICIENTS

All equations for the lossless pole-zero model introduced in Section II are also valid for the lossy
model except that equation &) needs to be modified into

C-1(2) [ 1 ]
i = M(pfy_1,2) - TM{ps, 2)T(u§, 2 , 17
[ Cr1(2) (Wi -1,2) (11, 2)IH(pi5, 2) 0 (17)
for the parameter g in (-1, 1). Reflecting this modification to (8), we get

By =1 ~1 | M(ufros,2)- TG, 1006, 2) | | (18)
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Now we reverse the flow of the signal flowgraph representing this matrix equation. Then, since
the signal flowgraph is for a one-input one-output linear system, the transfer function is preserved
over this reversion process. We also spread the effect of the negative sign, finally obtaining the
signal flowgraph whose matrix equation is

B()= (1~ M(=p,2) - M=k, )| o |- (19)

This represents the Gray-Markel lattice structure [5]. Therefore it is possible to apply the so-
called “stepdown” algorithm [5] to B(z) to determine the lattice coefficients k1, k2, - - -, kv, which
correspond to —uf_;, ~Hfy_q, * - —HG, respectively. This solves the problem of determining
the parameters uf’s, ¢ = 0,1,---,N — 1, for a given numerator function B(z). But it is a
difficult task to determine this moving average parameter B(z) itself out of raw speech signals.
In order to estimate B(2) in an optimal way (i.e., in terms of maximum likelihood estimation) we
have to estimate the minimum point of the nonlinear multivariate likelihood functions, which
is very difficult in practice. To get around this difficulty, several suboptimal methods have
been proposed, instead, among which the Durbin’s inverse linear prediction method is the most
popular and practical rﬁ], [2]. f we employ this method, the closed tract reflection coefficients
#5’°s can be determined from the given speech signal s(n) through the following three steps: First,
estimate B(z) from s(n} using Durbin’s method; then evaluate k; through ky by applying the
step-down routine to B(z); and finally put p§ = —kn, pf = —kn_1, ..., iy = —k1.

A(z}) is a polynomial of order L + M + N but with the degree of freedom of L + M + 1. We
first estimate A(z) of order L + M + N by applying (L + M + N)th order linear prediction (i.e.,

all-pole modeling) to 3(r), and then fit A(z) to A(z). Then g through pr4p can be evaluated.
As the performance measure we employ the error function

LA+M+N

J=Y (a(n)- a(n))? (20)

n=0

for the coefficients 4(n)’s in A(2) = SE2M+N 4(n)z~", and a(n)’s in A(z) = 22N a(n)z—m.
We apply the steepest descent method to this error function.

5. EXAMPLE

We take the nasal sound /m/ as the speech signal s{n) to be analyzed. In case sampling
frequency f, is 10kHz, we get the length of one section { = 1.7e¢m via the relation f, = ¢/2I
[4], with ¢ roughly 340 m/s. The length of the vocal tract including the pharynx and the oral
tract is about 16.5 to 19.5 cm for voiced sounds,” we assume the lengths of 7 ¢m, 10 cm, and 8
cm respectively for pharynx, the nasal tract, and the oral tract. Since the length of one section
is 1.7 ¢m, we obtain the section numbers L = 4, M = 6, and N = 5. Therefore the orders
of the polynomials A(z% and B(z) become 5 and 15, respectively. Table I and II display the
evaluated coeeficients. Fig. 7 shows the plots of frequency characteristics of the conventional
models, where (a) plots the magnitude of the 512-point speech signals s(n) in overlap with that
of the 30th order LPC all-pole model, (b) plots the magnitude of the conventional signal-based
model of order 5/15 (i.e., numerator of order 5 and denomirator of order 15), and (c} plots the
magnitude of the proposed lossy pole-zero model with (L, M, N)=(4, 6, 5). We define spectral
distance(SD) by

1 X 1 Y ’
SD= W—Zez(k)—{ﬁz\e(k)}, (21)

k=1 k=1

where e(k) = F,(k) — Fy(k) for the reference and test frequency characteristics Fy(k) and Fi(k).
Taking the 30th order all-pole characteristic in Fig. 7(a} as the reference F,(k), we obtain the

2 According to [5], the typical length of vocal tract for the voiced sounds fa/, fef, fif, /o, /uf are respectively,
17.0, 16,5, 16.5,18.5, and 19.5 em.
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S D’s for the 5/15th order existing pole-zero model and the proposed lossy pole-zero models for
the choice of (L, M, N) = (4, 6, 5} in Table III (a) and (b). The table shows the standard
deviations are all comparable.

5. CONCLUDING REMARKS

In this paper we presented a lossy pole-zero modeling of speech signals in the form of a signal
flowgraph as well as in terms of a pole-zero type transfer function. It becomes pole-zero or
all-pole type and lossy or lossless, by choosing ¢ and u§ properly. Hence the proposed signal
flowgraph can best serve as a speech synthesis filter.
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brench junction nasal tract TABLE I
glottls pharynx A ‘ Aut M REPLECTION COEFFICIENTS OF ORAL CAVITY

Auar Am T Y nostril

Wr | W w > -—— #% 1 -0.28604275

Uns —r, %) w & oral tract 4 | -0.09158915

[ “ ) u$ | -0.06728477

melf2 =0 xeVE Al _ vy ”gl '0.32191045

£ B -0.69770125

Fig. 1. Generaliged vocal tract model.

TABLE I
REFLECTION CORFFICIENTS OF PHARYNX AND NASAL CAVITY, AND
AREA RATIO 0.

TABLE III

v | 005616754 VALUES OF SPECTRAL DISTANCE(SD).

p2 | 0.111081565

ps | 0.18113914 [ ] Model | SD ]
#e | 0.01216234 (a) | 5/15 existing pole-zero model | 3.5
ps | 0.26472138 (degree of freedom: 20)

ue | 0.54511112 (b} | (4, 6, 5) lossy pole-zero model | 3.3
ur | -0.19794235 (degree of freedom: 16)

s | 0.30157218

pe | -0.40789313
810 -0.03154621

o | 0.13703220
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Fig. 2. A vocal tract system two-pair that generates H{z} and
Au(z)/A(z) (a), and the two-pair characterizing I1(z) (b).
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z

Fig. 3. Signal flowgraph of the two-pair characterized by the chain
matrix [I{gg, 2).
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Fig. 4. {a) Signal flowgraph of the two-pair characterized by the

chain matrix [l g(z); (b) series wave adaptor symbol representing
the box in (a}.
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Fig. 5. Signal flowgraph for C(z).
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Rig. 6. Overall signal flowgraph for the losay pole-zero model.
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Fig. 7. Comparison of frequency
characteristics of conventional models.
(a) Magnitude  characteristic  of
30th-order LPC all-pole model in
overlap with the DFT of the 512-point
speech signal /m/; (b} magnitude
characteristic of the conventional

signal-based pole—-zero model of order
5/15: {¢} magnitude characteristic of
the propused lossy pole-zero model for
the choice of (L, M, N} = (4, 5, 6).




