• Title/Summary/Keyword: Reflection angle

Search Result 358, Processing Time 0.068 seconds

A New Calibration Algorithm of a Five-Hole Pressure Probe for Flow Velocity Measurement (유동속도계측을 위한 5공압력프로브의 새로운 교정 알고리듬)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.18-25
    • /
    • 2008
  • This paper investigated the new calibration algorithm of a straight-type five-hole pressure probe necessary for calculating three-dimensional flow velocity components. The new data reduction method Includes a look-up, a geometry transformation such as the translation and reflection of nodes, and a binary search algorithm. This new calibration map was applied up to the application angle, ${\pm}55^{\circ}$ of a probe. As a result, this data reduction method showed a perfect performance without any kind of interpolation errors In calculating yaw and pitch angle from the calibration map.

  • PDF

Analysis of the Spectrum Characteristics of Etched Glass Surface by Incident Angle (입사각에 따른 에칭 기판의 분광특성분석)

  • Kim, Haemaro;Lee, Don-Kyu
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1077-1081
    • /
    • 2019
  • Lights that enter the surface of a solar cell cannot be absorbed inside all of the solar cells, and some of it is reflected off the surface of the substrate, resulting in loss. Because of this, many studies are underway to reduce reflective losses on the surface of substrates or to steam the generated charge inside the solar cell. In this paper, surface treatment for forming a rough surface by wet etching the surface of a glass substrate is advanced, and structural characteristics of the rough surface are analyzed. Then, spectral characteristics by changing the angle of the glass substrate to which light enters the company are analyzed. When the light entering the company is investigated on a etched surface, it is confirmed that the probability of re-absorbing the light inside the glass substrate by multiple reflection is increased. When entering the light while changing the angle of the glass substrate, the transmission and reflection performance of the light are not changed.

Interactive analysis tools for the wide-angle seismic data for crustal structure study (Technical Report) (지각 구조 연구에서 광각 탄성파 자료를 위한 대화식 분석 방법들)

  • Fujie, Gou;Kasahara, Junzo;Murase, Kei;Mochizuki, Kimihiro;Kaneda, Yoshiyuki
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.26-33
    • /
    • 2008
  • The analysis of wide-angle seismic reflection and refraction data plays an important role in lithospheric-scale crustal structure study. However, it is extremely difficult to develop an appropriate velocity structure model directly from the observed data, and we have to improve the structure model step by step, because the crustal structure analysis is an intrinsically non-linear problem. There are several subjective processes in wide-angle crustal structure modelling, such as phase identification and trial-and-error forward modelling. Because these subjective processes in wide-angle data analysis reduce the uniqueness and credibility of the resultant models, it is important to reduce subjectivity in the analysis procedure. From this point of view, we describe two software tools, PASTEUP and MODELING, to be used for developing crustal structure models. PASTEUP is an interactive application that facilitates the plotting of record sections, analysis of wide-angle seismic data, and picking of phases. PASTEUP is equipped with various filters and analysis functions to enhance signal-to-noise ratio and to help phase identification. MODELING is an interactive application for editing velocity models, and ray-tracing. Synthetic traveltimes computed by the MODELING application can be directly compared with the observed waveforms in the PASTEUP application. This reduces subjectivity in crustal structure modelling because traveltime picking, which is one of the most subjective process in the crustal structure analysis, is not required. MODELING can convert an editable layered structure model into two-way traveltimes which can be compared with time-sections of Multi Channel Seismic (MCS) reflection data. Direct comparison between the structure model of wide-angle data with the reflection data will give the model more credibility. In addition, both PASTEUP and MODELING are efficient tools for handling a large dataset. These software tools help us develop more plausible lithospheric-scale structure models using wide-angle seismic data.

Fabrication of Hydrophobic Anti-Reflection Coating Film by Using Sol-gel Method (Sol-gel 법을 이용한 내오염 반사방지 코팅막 제조)

  • Kim, Jung-Yup;Lee, Ji-Sun;Hwang, Jonghee;Lim, Tae-Young;Lee, Mi-Jai;Hyun, Soong-Keun;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.689-693
    • /
    • 2014
  • Anti-reflection coating films have used to increase the transmittance of displays and enhance the efficiency of solar cells. Hydrophobic anti-reflection coating films were fabricated on a glass substrate by sol-gel method. To fabricate an anti-reflection film with a high transmittance, poly ethylene glycol (PEG) was added to tetraethyl orthosilicate (TEOS) solution. The content of PEG was changed from 1 to 4 wt% in order to control the morphology, thickness, and refractive index of the $SiO_2$ thin films. The reflectance and transmittance of both sides of the coated thin film fabricated with PEG 4 wt% solution were 0.3% and 99.4% at 500 nm wavelength. The refractive index and thickness of the thin film were n = 1.29 and d = 105 nm. Fluoro alkyl silane (FAS) was used for hydrophobic treatment on the surface of the anti-reflection thin film. The contact angle was increased from $13.2^{\circ}$ to $113.7^{\circ}$ after hydrophobic treatment.

Characteristics of Virtual Reflection Images in Seismic Interferometry Using Synthetic Seismic Data (합성탄성파자료를 이용한 지진파 간섭법의 가상반사파 영상 특성)

  • Kim, Ki Young;Park, Iseul;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.2
    • /
    • pp.94-102
    • /
    • 2018
  • To characterize virtual reflection images of deep subsurface by the method of seismic interferometry, we analyzed effects of offset range, ambient noise, missing data, and statics on interferograms. For the analyses, seismic energy was simulated to be generated by a 5 Hz point source at the surface. Vertical components of particle velocity were computed at 201 sensor locations at 100 m depths of 1 km intervals by the finite difference method. Each pair of synthetic seismic traces was cross-correlated to generate stacked reflection section by the conventional processing method. Wide-angle reflection problems in reflection interferometry can be minimized by setting a maximum offset range. Ambient noise, missing data, and statics turn to yield processing noise that spreads out from virtual sources due to stretch mutes during normal moveout corrections. The level of processing noise is most sensitive to amplitude and duration time of ambient noise in stacked sections but also affected by number of missing data and the amount of statics.

Tele-operation of a Mobile Robot Using Force Reflection Joystick with Single Hall Sensor (단일 홀센서 힘반영 조이스틱을 이용한 모바일 로봇 원격제어)

  • Lee, Jang-Myung;Jeon, Chan-Sung;Cho, Seung-Keun
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.17-24
    • /
    • 2006
  • Though the final goal of mobile robot navigation is to be autonomous, operators' intelligent and skillful decisions are necessary when there are many scattered obstacles. There are several limitations even in the camera-based tele-operation of a mobile robot, which is very popular for the mobile robot navigation. For examples, shadowed and curved areas cannot be viewed using a narrow view-angle camera, especially in bad weather such as on snowy or rainy days. Therefore, it is necessary to have other sensory information for reliable tele-operations. In this paper, sixteen ultrasonic sensors are attached around a mobile robot in a ring pattern to measure the distances to obstacles. A collision vector is introduced in this paper as a new tool for obstacle avoidance, which is defined as a normal vector from an obstacle to the mobile robot. Based on this collision vector, a virtual reflection force is generated to avoid the obstacles and then the reflection force is transferred to an operator who is holding a joystick to control the mobile robot. Relying on the reflection force, the operator can control the mobile robot more smoothly and safely. For this bi-directional tele-operation, a master joystick system using a hall sensor was designed to resolve the existence of nonlinear sections, which are usual for a general joystick with two motors and potentiometers. Finally, the efficiency of a force reflection joystick is verified through the comparison of two vision-based tele-operation experiments, with and without force reflection.

  • PDF

Automatic Determination of the Azimuth Angle of Reflectors in Borehole Radar Reflection Data Using Direction-finding Antenna (방향탐지 안테나를 이용한 시추공 레이다 반사법 탐사에 있어서 반사층 방위각의 자동 결정)

  • Kim Jung-Ho;Cho Seong-Jun;Yi Myeong-Jong;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.3
    • /
    • pp.176-182
    • /
    • 1998
  • The borehole radar reflection survey can image the underground structure with high resolution, however, we cannot get any information on the orientation of the reflectors with dipole antenna alone. The direction-finding antenna system is commonly used to give the solution to the problem. However, the interpretation of the data from direction- finding antenna may be time-consuming, and sometimes have ambiguities in the sense of precise determination of the azimuth. To solve the problem, we developed the automatic azimuth finding scheme of reflectors in borehole radar reflection data using direction-finding antenna. The algorithm is based on finding the azimuthal angle possibly showing the maximum reflection amplitude in the least-squared error sense. The developed algorithm was applied to the field data acquired in quarry mine. It was possible to locate nearly all of the reflectors in three dimensional fashion, which coincide with the known geological structures and man-made discontinuities.

  • PDF

Impact of pore fluid heterogeneities on angle-dependent reflectivity in poroelastic layers: A study driven by seismic petrophysics

  • Ahmad, Mubasher;Ahmed, Nisar;Khalid, Perveiz;Badar, Muhammad A.;Akram, Sohail;Hussain, Mureed;Anwar, Muhammad A.;Mahmood, Azhar;Ali, Shahid;Rehman, Anees U.
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.343-354
    • /
    • 2019
  • The present study demonstrates the application of seismic petrophysics and amplitude versus angle (AVA) forward modeling to identify the reservoir fluids, discriminate their saturation levels and natural gas composition. Two case studies of the Lumshiwal Formation (mainly sandstone) of the Lower Cretaceous age have been studied from the Kohat Sub-basin and the Middle Indus Basin of Pakistan. The conventional angle-dependent reflection amplitudes such as P converted P ($R_{PP}$) and S ($R_{PS}$), S converted S ($R_{SS}$) and P ($R_{SP}$) and newly developed AVA attributes (${\Delta}R_{PP}$, ${\Delta}R_{PS}$, ${\Delta}R_{SS}$ and ${\Delta}R_{SP}$) are analyzed at different gas saturation levels in the reservoir rock. These attributes are generated by taking the differences between the water wet reflection coefficient and the reflection coefficient at unknown gas saturation. Intercept (A) and gradient (B) attributes are also computed and cross-plotted at different gas compositions and gas/water scenarios to define the AVO class of reservoir sands. The numerical simulation reveals that ${\Delta}R_{PP}$, ${\Delta}R_{PS}$, ${\Delta}R_{SS}$ and ${\Delta}R_{SP}$ are good indicators and able to distinguish low and high gas saturation with a high level of confidence as compared to conventional reflection amplitudes such as P-P, P-S, S-S and S-P. In A-B cross-plots, the gas lines move towards the fluid (wet) lines as the proportion of heavier gases increase in the Lumshiwal Sands. Because of the upper contacts with different sedimentary rocks (Shale/Limestone) in both wells, the same reservoir sand exhibits different response similar to AVO classes like class I and class IV. This study will help to analyze gas sands by using amplitude based attributes as direct gas indicators in further gas drilling wells in clastic successions.

Enhancement of Light Guiding Efficiency in CMOS Image Sensor by Introducing an Optical Thin Film (광학 박막을 채용한 CMOS 이미지 센서 픽셀의 수광 효율)

  • Kang, Myung-Hoon;Ko, Eun-Mi;Lee, Je-Won;Cho, Guan-Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.1
    • /
    • pp.57-60
    • /
    • 2009
  • We consider introducing an optical thin film to the light guiding wall of a pixel in order to enhance the light guiding efficiency of a CMOS image sensor. Simulating the reflectance as a function of the incidence angle using the Essential Macleod program, we find that the range of total internal reflection is greatly increased for several materials. Particularly when air is chosen as the thin film material, the critical angle of total internal reflection could be shifted to about 50 degrees.