Browse > Article
http://dx.doi.org/10.12989/gae.2019.17.4.343

Impact of pore fluid heterogeneities on angle-dependent reflectivity in poroelastic layers: A study driven by seismic petrophysics  

Ahmad, Mubasher (Institute of Geology, University of the Punjab)
Ahmed, Nisar (Institute of Geology, University of the Punjab)
Khalid, Perveiz (Institute of Geology, University of the Punjab)
Badar, Muhammad A. (Institute of Geology, University of the Punjab)
Akram, Sohail (Institute of Geology, University of the Punjab)
Hussain, Mureed (Department of Marine Geology, Lasbela University of Agriculture, Water and Marine Sciences)
Anwar, Muhammad A. (Institute of Geology, University of the Punjab)
Mahmood, Azhar (Petrophysics, Software Integrated Solution (SIS) Data Services Schlumberger)
Ali, Shahid (Institute of Geology, University of the Punjab)
Rehman, Anees U. (Department of Earth Sciences, Quaid-I-Azam University)
Publication Information
Geomechanics and Engineering / v.17, no.4, 2019 , pp. 343-354 More about this Journal
Abstract
The present study demonstrates the application of seismic petrophysics and amplitude versus angle (AVA) forward modeling to identify the reservoir fluids, discriminate their saturation levels and natural gas composition. Two case studies of the Lumshiwal Formation (mainly sandstone) of the Lower Cretaceous age have been studied from the Kohat Sub-basin and the Middle Indus Basin of Pakistan. The conventional angle-dependent reflection amplitudes such as P converted P ($R_{PP}$) and S ($R_{PS}$), S converted S ($R_{SS}$) and P ($R_{SP}$) and newly developed AVA attributes (${\Delta}R_{PP}$, ${\Delta}R_{PS}$, ${\Delta}R_{SS}$ and ${\Delta}R_{SP}$) are analyzed at different gas saturation levels in the reservoir rock. These attributes are generated by taking the differences between the water wet reflection coefficient and the reflection coefficient at unknown gas saturation. Intercept (A) and gradient (B) attributes are also computed and cross-plotted at different gas compositions and gas/water scenarios to define the AVO class of reservoir sands. The numerical simulation reveals that ${\Delta}R_{PP}$, ${\Delta}R_{PS}$, ${\Delta}R_{SS}$ and ${\Delta}R_{SP}$ are good indicators and able to distinguish low and high gas saturation with a high level of confidence as compared to conventional reflection amplitudes such as P-P, P-S, S-S and S-P. In A-B cross-plots, the gas lines move towards the fluid (wet) lines as the proportion of heavier gases increase in the Lumshiwal Sands. Because of the upper contacts with different sedimentary rocks (Shale/Limestone) in both wells, the same reservoir sand exhibits different response similar to AVO classes like class I and class IV. This study will help to analyze gas sands by using amplitude based attributes as direct gas indicators in further gas drilling wells in clastic successions.
Keywords
AVO modeling; fluid moduli; Indus basin; Zoeppritz equations; intercept-gradient; rock physics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Booth, A.D., Emir, E. and Diez, A. (2016), "Approximations to seismic AVA responses: Validity and potential in glaciological applications", Geophysics, 81(1), WA1-W11.   DOI
2 Castagna, J.P., Batzle, M.L. and Eastwood, R.L. (1985), "Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks", Geophysics, 50(4), 571-581.   DOI
3 Castagna, J.P., Swan, H.S. and Foster, D.J. (1998), "Framework for the interpretation of AVO intercept and gradient", Geophysics, 63(3), 948-956.   DOI
4 Chapman, M., Liu, E. and Li, X.Y. (2006), "The influence of fluidsensitive dispersion and attenuation on AVO analysis", Geophys. J. Int., 167(1), 89-105.   DOI
5 Gassmann, F. (1951), "Elastic waves through a packing of spheres", Geophysics, 16(4), 673-685.   DOI
6 Golikov, P., Avseth, P., Stovas, A. and Bachrach, R. (2013), "Rock physics interpretation of heterogeneous and anisotropic turbidite reservoirs", Geophys. Prospect., 61(2), 448-457.   DOI
7 Hedlin, K. (2000), Pore Space Modulus and Extraction Using AVO, in SEG Technical Program Expanded Abstracts 2000, Proceedings of the 70th Annual International Meeting, Society of Exploration Geophysicists, 170-173.
8 Hill, R. (1952), "The elastic behavior of a crystalline aggregate", Proc. Phys. Soc. Sec. A., 65(5), 349-354.   DOI
9 Innanen, K.A. (2011), "Inversion of the seismic AVF/AVA signatures of highly attenuative targets", Geophysics, 76(1), R1-R14.   DOI
10 Kadri, I.B. (1995), Petroleum Geology of Pakistan, Pakistan Petroleum Ltd, Karachi, Pakistan.
11 Kazmi, A.H., and Rana, R.A. (1982), "Tectonic map of Pakistan, bf.", Geol. Sum. Pakistan, Scale, 1(2).
12 Ahmed, N., Khalid, P., Ghazi, S. and Anwar, A.W. (2014), "AVO forward modeling and attributes analysis for fluid's identification: A case study", Acta Geod. Geophys., 50(4), 377-390.   DOI
13 Zoeppritz, K. (1919), "Erdbebenwellen VIIIB, on the reflection and propagation of seismic waves", Gottinger Nachrichten, 1, 66-84.
14 Ahmed, N., Badar, M.A., Anwar, M.A., Ahmad, M., Rehman, A.U. and Khalid, P. (2017a), "Application of spreadsheet program in p converted p and s waves amplitudes modeling at geological interface and to identify gas sands", Geophys. Res. J., 4(1), 11-25.
15 Ahmed, N., Kausar, T., Khalid, P. and Akram, S. (2018), "Assessment of reservoir rock properties from rock physics modeling and petrophysical analysis of borehole logging data to lessen uncertainty in formation characterization in Ratana Gas Field, northern Potwar, Pakistan", J. Geol. Soc. India, 91(6), 736-742.   DOI
16 Ahmed, N., Khalid, P. Ali, T., Ahmad, S.R. and Akhtar, S. (2016), "Differentiation of pore fluids using amplitude versus offset attributes in clastic reservoirs, Middle Indus Basin, Pakistan", Arab. J. Sci. Eng., 41(6), 2315-2323.   DOI
17 Ahmed, N., Khalid, P. Shafi, H.M.B. and Connolly, P. (2017b), "DHIs evaluation by combining rock physics simulation and statistical techniques for fluids identification of Cambrian to Cretaceous clastic reservoirs in Pakistan", Acta Geophys., 65(5), 991-1007.   DOI
18 Aki, K. and Richards, P.G. (1980), Quantitative Seismology: Theory and Methods, W. H. Freeman and Co., 726.
19 Khalid, P., Brosta, D. Nichita, D.V. and Blanco, J. (2014), "A modified rock physics model for analysis of seismic signatures of low gas-saturated rocks", Arab. J. Geosci., 7(8), 3281-3295   DOI
20 Khalid, P., and Ahmed, N. (2016), "Modulus defect, velocity dispersion and attenuation in partially-saturated reservoirs of Jurassic sandstone, Indus Basin, Pakistan", Stud. Geophys. Geod., 60(1), 112-129.   DOI
21 Khan, K.A., Anees, A. and Ahmed, N. (2015), "An educational tool for Zoeppritz equations and their various approximations", Geophys. Res. J., 3(1), 49-54.
22 Murphy, W., Reischer, A. and Hsu, K. (1993), "Modulus decomposition of compressional and shear velocities in sand bodies", Geophysics, 58(2), 227-239.   DOI
23 Azzam, S.S. and Shazly, T.F. (2012), "A comparison between porosity derived from seismic reflection data and that computed from well log data, Al Amal Field, Gulf of Suez, Egypt", Petrol. Sci. Technol., 30(1), 16-27.   DOI
24 Baig, M.O., Harris, N.B., Ahmed, H. and Baig, M.O.A. (2016), "Controls on reservoir diagenesis in the Lower Goru sandstone formation, Lower Indus Basin, Pakistan", J. Petrol. Geol., 39(1), 29-48.   DOI
25 Batzle, M.L. and Wang, Z. (1992), "Seismic properties of pore fluids", Geophysics, 57(11), 1396-1408.   DOI
26 Liu, C., Gosh, D.P., Salim, A.M.A. and Chow, W.S. (2019), "A new fluid factor and its application using a deep learning approach", Geophys. Prospect., 67(1), 140-149.   DOI
27 Mavko, G., Mukerji, T. and Dvorkin, J. (2009), The Rock Physics Handbook, Cambridge University Press, Cambridge, U.K.
28 Narongsirikul, S., Mondol, N.H. and Jahren, J. (2019), "Acoustic and petrophysical properties of mechanically compacted overconsolidated sands: Part 2-Rock physics modelling and applications", Geophys. Prospect., 67(1), 114-127.   DOI
29 Reuss, A. (1929), "Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle", Z. Angew. Math. Mech., 9(1), 49-58.   DOI
30 Shuey, R.T. (1985), "A simplification of Zoeppritz equations", Geophysics, 50(4), 609-614.   DOI
31 Silin, D. and Goloshubin, G. (2010), "An asymptotic model of seismic reflection from a permeable layer", Transp. Porous Med., 83(1), 233-256   DOI
32 Wu, X., Chapman, M., Li, X.Y. and Boston, P. (2014), "Quantitative gas saturation estimation by frequency-dependent amplitude-versus-offset analysis", Geophys. Prospect., 62(6), 1224-1237.   DOI
33 Singha, D.K. and Chatterjee, R. (2017), "Rock physics modeling in sand reservoir through well log analysis, Krishna-Godavari basin, India", Geomech. Eng., 13(1), 99-117.   DOI
34 Smith, G.C. and Gidlow, P.M. (1987), "Weighted stacking for rock property estimation and detection of gas", Geophys. Prospect., 35(9), 993-1014.   DOI
35 Voigt, W. (1910), "Weiteres zu der Bernoullischen Methode der Bestimmung der optischen Konstanten von Metallen", Ann. D. Physik, 338(14), 833-838.   DOI
36 Wang, Z. (2001), "Fundamentals of seismic rock physics", Geophysics, 66(2), 398-412.   DOI
37 Wood, A.B. (1941), A Textbook of Sound, G. Bell and Sons, London, U.K.
38 Xu, D., Wang, Y., Gan, Q. and Tang, J. (2011), "Frequencydependent seismic reflection coefficient for discriminating gas reservoirs", J. Geophys. Eng., 8(4), 508-513.   DOI
39 Zhang, S., Chen, S. and Li, H.Y. (2016), "Modeling and analysis of frequency-dependent AVO attributes for fluids saturation prediction", Proceedings of the 78th EAGE Conference and Exhibition, Vienna, Austria, May-June.
40 Zhao, L., Han, D., Yao, Q., Zhou, R. and Yan, F. (2015), "Seismic reflection dispersion due to wave-induced fluid flow in heterogeneous reservoir rocks", Geophysics, 80(3), 221-235.   DOI
41 Zhi, L., Chen, S. and Li, X. (2016), "Amplitude variation with angle inversion using the exact Zoeppritz equations-Theory and methodology", Geophysics, 81(2), N1-N15.   DOI
42 Zhu, F., Gibson Jr, R.L., Watkins, J.S. and Yuh, S.H. (2000), "Distinguishing fizz gas from commercial gas reservoirs using multicomponent seismic data", Lead. Edge, 19(11), 1238-1245.   DOI