• Title/Summary/Keyword: Reflectance spectrum

Search Result 164, Processing Time 0.03 seconds

THE EFFECT OF AN APPLIED BIAS UPON THE REFLECTANCE AND ADHESION OF SILVER FILMS BEING SPUTTER-DEPOSITED ON POLYESTER SUBSTRATE

  • Ri, Eui-Jae;Hoang, Tae-Su
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.257-264
    • /
    • 1999
  • Thin reflective films are synthesized by using PVD methods with a bright metal of Al or Ag. For purposes of improving the reflectance and adhesion of such films particularly, substrate bias was applied during sputtering (namely, ion-plating) to enhance the deposition process with higher energy. And we succeeded in fabricating a quality silver film which possesses an adhesion of $85{\;}Kg/\textrm{cm}^2$ and a high reflectivity of more than 96%. Both of reflectivity and adhesion are better in case of bias sputtering as controlled than nonbias sputtering, particularly the bias of 50-100 V showed most effective. The microstructures of sample films were examined by using various equipments and the XRD spectrum in particular showed that <111> direction is the preferred growth orientation.

  • PDF

Quantitative Analysis by Diffuse Reflectance Infrared Fourier Transform and Linear Stepwise Multiple Regression Analysis I -Simultaneous quantitation of ethenzamide, isopropylantipyrine, caffeine, and allylisopropylacetylurea in tablet by DRIFT and linear stepwise multiple regression analysis-

  • Park, Man-Ki;Yoon, Hye-Ran;Kim, Kyoung-Ho;Cho, Jung-Hwan
    • Archives of Pharmacal Research
    • /
    • v.11 no.2
    • /
    • pp.99-113
    • /
    • 1988
  • Quantitation of ethenzamide, isopropylantipyrine and caffeine takes about 41 hrs by conventional GC method. Quantitation of allylisoprorylacetylurea takes about 40 hrs by conventional UV method. But quantitation of them takes about 6 hrs by DRIFT developing method. Each standard and sample sieved, powdered and acquired DRIFT spectrum. Out of them peak of each component was selected and ratio of each peak to standard peak was acquired, and then linear stepwise multiple regression was performed with these data and concentration. Reflectance value, Kubelka-Munk equation and Inverse-Kubelka-Munk equation were modified by us. Inverse-Kubelka-Munk equation completed the deficit of Kubelka-Munk equation. Correlation coefficients acquired by conventioanl GC and UV against DRIFT were more than 0.95.

  • PDF

UV-Vis and ED-XRF Analyses of Natural Black Colored Pearls from Freshwater Cultured Shells (UV-Vis와 ED-XRF를 이용한 자연 색상의 담수 흑 양식진주 분석)

  • Kim, Hea-Yeon;Park, Jong-Wan
    • The Korean Journal of Malacology
    • /
    • v.24 no.3
    • /
    • pp.243-251
    • /
    • 2008
  • Analyses of UV-Vis spectrum and reflectance are useful tools to identify pearls of which color was naturally made or chemically changed. Contents of some trace elements of pearls by using ED-XRF may give us the information that the pearls were originated from marine shells or freshwater shells, and may give us whether the pearls were chemically treated or not. Three types of chemically untreated pearls, freshwater cultured, Akoya cultured and Tahitian cultured, were treated with silver nitrate. UV-Vis absorbance spectrum of Ag was changed after treatment, and reflectance of pearls was decreased. Absorbance of natural black colored Tahitian cultured pearls at 400, 500 and 700 nm was observed. Natural black colored freshwater cultured pearls showed two characteristic absorption patterns in UV-Vis spectra at 380-400, 480-500 nm. Unlike naturally black colored Tahitian cultured pearls, the absorption spectrum at 700 nm could not be found from black freshwater cultured pearls. Manganese was not detected in the pearls from marine shells, and strontium content of the pearls from marine cultured shells was higher than that from freshwater cultured shells. According to ED-XRF analysis, Ag contents of silver nitrate treated pearls increased as more time passed, because silver ion invaded to nacre layer of the pearls. Since Ag content of the black pearls known as untreated ranged under 0.1%, analysis of Ag content may used to distinguish the black pearls are treated or not in marketplace.

  • PDF

Optical Multi-Normal Vector Based Iridescence BRDF Compression Method (광학적 다중 법선 벡터 기반 훈색(暈色)현상 BRDF 압축 기법)

  • Ryu, Sae-Woon;Lee, Sang-Hwa;Park, Jong-Il
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.3
    • /
    • pp.184-193
    • /
    • 2010
  • This paper proposes a biological iridescence BRDF(Bidirectional Reflectance Distribution Function) compression and rendering method. In the graphics technology, iridescence sometimes is named structure colors. The main features of these symptoms are shown transform of color and brightness by varying viewpoint. Graphics technology to render this is the BRDF technology. The BRDF methods enable realistic representation of varying view direction, but it requires a lot of computing power because of large data. In this paper, we obtain reflection map from iridescence BRDF, analyze color of reflection map and propose representation method by several colorfully concentric circle. The one concentric circle represents beam width of reflection ray by one normal vector. In this paper, we synthesize rough concentric by using several virtually optical normal vectors. And we obtain spectrum information from concentric circles passing through the center point. The proposed method enables IBR(image based rendering) technique which results is realistic illuminance and spectrum distribution by one texture from reduced BRDF data within spectrum.

In-situ Monitoring of GaN Epilayers by Spectral Reflectance (분광 반사법을 이용한 GaN 박막의 실시간 관찰)

  • Na, Hyun-Seok
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.361-366
    • /
    • 2011
  • An in-situ, real-time monitoring of GaN epilayers grown by low pressure metalorganic chemical vapor deposition system modified for spectral reflectance was performed. Reflectance spectrums from 190~861 nm were observed using p-polarized light with incident angle of $75^{\circ}$. All reflectance spectrums showed interference oscillation caused by multiple reflection within GaN epilayers, and the spectrum from GaN with low crystalline quality showed weak reflectance intensity and much low amplitude of the oscillation because many defects in GaN resulted in light scattering and absorption. Signal variation of reflected light which was selected around strong constructive wavelength range was also observed during $NH_3$ supplying and $NH_3$ cut-off. There was no significant change in signal intensity when $NH_3$ cut-off for 10 sec, but it showed higher intensity when $NH_3$ was cut off for over 30 sec and its intensity kept unchanged. This result indicates that GaN surface was N-terminated during $NH_3$ supplying but Ga-terminated during $NH_3$ cut-off because of high nitrogen equilibrium vapor pressure of GaN, and metallic Ga-terminated surface caused slightly higher reflectance intensity.

Relationship Between Color Characteristic and Reflectance Index by Ground-based Remote Sensor for Tobacco Leaves (연초 엽의 색 특성과 원격탐사 반사율지표의 상호관계)

  • Hong, Soon-Dal;Kang, Seong-Soo;Jeon, Sang-Ho;Jeong, Hyun-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.274-279
    • /
    • 2009
  • To determine the critical level for optimum maturity of flue-cured tobacco leaves (KF118) at the stalk position from cutter to tips, the reflectance index using ground-based remote sensors and chlorophyll meter were investigated. The sensors estimated were Crop $Circle^{TM}$ (Holland Scientific), Green $Seeker^{TM}$ (Ntech Industries), Spectroradiometer (LICOR, LI-1800), Chlorophyll meter (SPAD502, Minolta), and Field $Scout^{TM}$ Chlorophyll meter (CM-1000, Spectrum). The L, a, b values and greenness for flue-cured leaf were measured and estimated for correlation with sensor's measurement of harvested leaf. On a reflectance curve of 340nm~1100 nm, the reflectance peaks on 550nm and 675 nm for the harvested leaf were lowered as change from light green to darker green. Darker green leaf harvested produced darker flue-cured leaf. The reflectance at 675 nm for flue-cured leaf decreased as greenness increased in the harvested leaf. This result means that the red edge band of 675 nm wavelength is related to the absorbance of chlorophyll for photosynthesis. The greenness of flue-cured leaf showed significantly positive correlation with the entire reflectance indexes for harvested leaf while the L value by colorimeter showed negative correlation with greenness of cured leaf. The critical level for optimum maturity of harvested leaf were less than 22, 135, and 0.43 for SPAD reading, CM-1000 reading, and gNDVI by Crop $Circle^{TM}$, respectively. Consequently, ground-based remote sensing providing a non-destructive real-time assessment of plant greenness could be a useful tool in the selection of optimum maturity of flue-cured tobacco leaves in relation to high quality of flue-cured tobacco.

Analysis of Spectral Reflectance Characteristics Using Hyperspectral Sensor at Diverse Phenological Stages of Soybeans

  • Go, Seung-Hwan;Park, Jin-Ki;Park, Jong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.699-717
    • /
    • 2021
  • South Korea is pushing for the advancement of crop production technology to achieve food self-sufficiency and meet the demand for safe food. A medium-sized satellite for agriculture is being launched in 2023 with the aim of collecting and providing information on agriculture, not only in Korea but also in neighboring countries. The satellite is to be equipped with various sensors, though reference data for ground information are lacking. Hyperspectral remote sensing combined with 1st derivative is an efficient tool for the identification of agricultural crops. In our study, we develop a system for hyperspectral analysis of the ground-based reflectance spectrum, which is monitored seven times during the cultivation period of three soybean crops using a PSR-2500 hyperspectral sensor. In the reflection spectrum of soybean canopy, wavelength variations correspond with stages of soybean growths. The spectral reflection characteristics of soybeans can be divided according to growth into the vegetative (V)stage and the reproductive (R)stage. As a result of the first derivative analysis of the spectral reflection characteristics, it is possible to identify the characteristics of each wavelength band. Using our developed monitoring system, we observed that the near-infrared (NIR) variation was largest during the vegetative (V1-V3) stage, followed by a similar variation pattern in the order of red-edge and visible. In the reproductive stage (R1-R8), the effect of the shape and color of the soybean leaf was reflected, and the pattern is different from that in the vegetative (V) stage. At the R1 to R6 stages, the variation in NIR was the largest, and red-edge and green showed similar variation patterns, but red showed little change. In particular, the reflectance characteristics of the R1 stage provides information that could help us distinguish between the three varieties of soybean that were studied. In the R7-R8 stage, close to the harvest period, the red-edge and NIR variation patterns and the visible variation patterns changed. These results are interpreted as a result of the large effects of pigments such as chlorophyll for each of the three soybean varieties, as well as from the formation and color of the leaf and stem. The results obtained in this study provide useful information that helps us to determine the wavelength width and range of the optimal band for monitoring and acquiring vegetation information on crops using satellites and unmanned aerial vehicles (UAVs)

Analysis of the Impact of Surface Reflectance Error Retrieved from 6SV for KOMPSAT-3A according to MODIS AOD Expected Error (MODIS AOD 기대 오차에 따른 6SV 기반 KOMPSAT-3A 채널별 지표반사도 오차 영향 분석)

  • Daeseong Jung;Suyoung Sim;Jongho Woo;Nayeon Kim;Sungwoo Park;Honghee Kim;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1517-1522
    • /
    • 2023
  • This study evaluates the impact of Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) expected error (EE) on the accuracy of surface reflectance (SR) derived from the KOMPSAT-3A satellite, utilizing the Second Simulation of the Satellite Signal in the Solar Spectrum Vector radiative transfer model. By considering a range of ground-based AOD and the resultant MODIS AOD EE, the research identifies significant influences on SR accuracy, particularly under high solar zenith angles(SZA) and shorter wavelengths. The study's simulations reveal that SR errors increase with shorter wavelengths and higher SZAs, highlighting the necessity for further research to improve atmospheric correction algorithms by incorporating wavelength and SZA considerations. Additionally, the study provides foundational data for better understanding the use of AOD data from other satellites in atmospheric correction processes and contributes to advancing atmospheric correction technologies.

Study on the Deintercalation of $H_2SO_4$--Intercalated Graphite Fiber ($H_2SO_4$-Intercalated Graphite Fiber의 Deintercalation에 관한 연구)

  • 김인기;최상흘;고영신
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.10
    • /
    • pp.797-802
    • /
    • 1993
  • Graphite fiber intercalated compound was deintercalated at $25^{\circ}C$, 65% of humidity and its deintercalated compound was discussed, based on the X-ray diffraction analysis, electrical resistivity measurement, and UV/VIS spectrometer measurements. During deintercalation, the structure was changed in orderlongrightarrowdisorderlongrightarroworder, and resistivity was decreased in the disorder state of the structure, which reflectance minimum of the UV/VIS spectrum ranged from 660 to 750nm (1.88~1.65eV).

  • PDF