• 제목/요약/키워드: Refinement behavior

Search Result 129, Processing Time 0.022 seconds

A CLASSIFICATION OF UNIQUELY DIFFERENT TYPES OF NUCLEAR FISSION GAS BEHAVIOR

  • HOFMAN GERARD L.;KIM YEON SOO
    • Nuclear Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.299-308
    • /
    • 2005
  • The behavior of fission gas in all major types of nuclear fuel has been reviewed with an emphasis on more recently discovered aspects. It is proposed that the behavior of fission gas can be classified in a number of characteristic types that occur at a high or low operating temperature, and/or at high or low fissile burnup. The crystal structure and microstructure of the various fuels are the determinant factors in the proposed classification scheme. Three types of behavior, characterized by anisotropic $\alpha$-U, high temperature metallic $\gamma$-U, and cubic ceramics, are well-known and have been extensively studied in the literature. Less widely known are two equally typical low temperature kinds: one associated with fission induced grain refinement and the other with fission induced amorphization. Grain refinement is seen in crystalline fuel irradiated to high burnup at low temperatures, whereas breakaway swelling is observed in amorphous fuel containing sufficient excess free-volume. Amorphous fuel, however, shows stable swelling if insufficient excess free-volume is available during irradiation.

Effect of grain refinement on the performance of AZ80 Mg alloys during wear and corrosion

  • Naik, Gajanan M;Gote, Gopal D.;Narendranath, S;Kumar, S.S. Satheesh
    • Advances in materials Research
    • /
    • v.7 no.2
    • /
    • pp.105-118
    • /
    • 2018
  • Magnesium and its alloys are attracted towards all engineering applications like automotive, marine, aerospace etc. due to its inherent high strength to weight ratio. But, extensive use of Mg alloys is limited to the current scenario because of low wear and corrosion resistance behavior. However, equal channel angular press is one of the severe plastic deformation technique which has been effective method to improve the wear and corrosion resistance by achieving fine grain structure. In this study, the effect of grain refinement on wear and corrosion resistance of AZ80 Mg alloys were investigated. The wear behavior of the coarse and fine-grained Mg alloys was examined through $L_9$ orthogonal array experiments in order to comprehend the wear behavior under varies control parameters. It was shown that ECAPed alloy increased the wear and corrosion resistance of the Mg alloy through the formation of fine grain and uniform distribution of secondary ${\beta}-phase$. Also, the performance of AZ80 Mg alloy for these changeswas discussed through SEM morphology.

Mechanical Alloying Behavior of Immiscible W-Cu-Pb Ternary System (불고용 W-Cu-Pb삼원계의 기계적 합금화 거동)

  • 류성수
    • Journal of Powder Materials
    • /
    • v.5 no.3
    • /
    • pp.220-226
    • /
    • 1998
  • W-12.8wt%Cu-7.2%Pb powders were milled at room temperature and $-100^{\circ}C$ to investigate the mechanical alloying behavior of immiscible W-Cu-Pb system and the effect of milling temperature on the extent of alloying and microstructural refinement. W-Cu-Pb powder reached steady state after further extended milling due to Pb addition, compared to the W-Cu system. The cryomilling at $-100^{\circ}C$ caused the more refinement of powder particle size, and enhanced the solubility of Cu or Pb in W, compared with milling at room temperature. In W-12.8wt%Cu-7.2%Pb powder cryomilled at $-100^{\circ}C$, the monotectic temperature of Cu-Pb as well as the melting temperature of Cu was decreased by refinement of Cu crystalline size, and the most amorphization was occurred after milling for 150 h.

  • PDF

Study on Statecharts-based Progressive Behavior LOD Model for Virtual Objects (가상 객체를 위한 스테이트챠트 기반의 점진적인 행위 LOD 모델 연구)

  • Seo, Jin-Seok;Youn, Joo-Sang
    • Journal of Digital Contents Society
    • /
    • v.12 no.2
    • /
    • pp.185-194
    • /
    • 2011
  • This paper introduces a Statecharts-based progressive behavior LOD model for computer games and virtual reality systems. In order to use computing resources efficiently and generate an LOD model having arbitrary complexity, we defined a progressive behavior LOD model which including a Statecharts-based specification process, refinement operations, a switching policy, and an LOD selection policy. Additionally, in order to show the possibility of the proposed approach, we demonstrate an example of progressive LOD models by illustrating a step-by-step design of a virtual vehicle.

Acceleration of Delaunay Refinement Algorithm by Geometric Hashing (기하학적 해싱을 이용한 딜러니 개선 알고리듬의 가속화)

  • Kim, Donguk
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.2
    • /
    • pp.110-117
    • /
    • 2017
  • Delaunay refinement algorithm is a classical method to generate quality triangular meshes when point cloud and/or constrained edges are given in two- or three-dimensional space. It computes the Delaunay triangulation for given points and edges to obtain an initial solution, and update the triangulation by inserting steiner points one by one to get an improved quality triangulation. This process repeats until it satisfies given quality criteria. The efficiency of the algorithm depends on the criteria and point insertion method. In this paper, we propose a method to accelerate the Delaunay refinement algorithm by applying geometric hashing technique called bucketing when inserting a new steiner point so that it can localize necessary computation. We have tested the proposed method with a few types of data sets, and the experimental result shows strong linear time behavior.

Preparation and Refinement Behavior of (Hf-Ti-Ta-Zr-Nb)C High-Entropy Carbide Powders by Ultra High Energy Ball Milling Process (초고에너지 볼 밀링공정에 의한 (Hf-Ti-Ta-Zr-Nb)C 고엔트로피 카바이드 분말 제조 및 미세화 거동)

  • Song, Junwoo;Han, Junhee;Kim, Song-Yi;Seok, Jinwoo;Kim, Hyoseop
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.34-40
    • /
    • 2022
  • Recently, high-entropy carbides have attracted considerable attention owing to their excellent physical and chemical properties such as high hardness, fracture toughness, and conductivity. However, as an emerging class of novel materials, the synthesis methods, performance, and applications of high-entropy carbides have ample scope for further development. In this study, equiatomic (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide powders have been prepared by an ultrahigh-energy ball-milling (UHEBM) process with different milling times (1, 5, 15, 30, and 60 min). Further, their refinement behavior and high-entropy synthesis potential have been investigated. With an increase in the milling time, the particle size rapidly reduces (under sub-micrometer size) and homogeneous mixing of the prepared powder is observed. The distortions in the crystal lattice, which occur as a result of the refinement process and the multicomponent effect, are found to improve the sintering, thereby notably enhancing the formation of a single-phase solid solution (high-entropy). Herein, we present a procedure for the bulk synthesis of highly pure, dense, and uniform FCC single-phase (Fm3m crystal structure) (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide using a milling time of 60 min and a sintering temperature of 1,600℃.

Influence of initial ECAP passes on the anisotropic behavior of an extruded magnesium alloy (초기 등통로각압출 공정 횟수가 압출된 마그네슘 합금의 이방성에 미치는 영향)

  • Bae, Seong-Hwan;Min, Kyung-Ho
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.34-38
    • /
    • 2016
  • In this paper, a transversely isotropic behavior of AZ31 Mg alloy produced by equal-channel angular pressing (ECAP) process was investigated through tensile test and microstructure observation. The effects of initial ECAP pass number on the anisotropic behavior and mechanical properties of the Mg alloy are evaluated after conventional direct extrusion test, which are carried out at a temperature of $200^{\circ}C$. As a result of the tensile test in three directions ($0^{\circ}$, $45^{\circ}$, and $90^{\circ}$ to the extrusion direction of the sheet) at room temperature, elongation of as-extruded AZ31 alloy(ECAP for 0 pass) showed an unusual anisotropic behavior depending on the extrusion direction although the yield strength and tensile strength are similar to the ECAPed AZ31 alloy. After ECAP for 4 passes at $200^{\circ}C$, microstructural observations of ECAPed magnesium alloy showed a significant grain refinement, which is leading to an equiaxed grain structure with average size of $2.5{\mu}m$. The microstructures of the extruded billet are observed by the use of an electron back-scattering diffraction (EBSD) technique to evaluate of the influence on the grain refinement during extrusion process and re-crystallization mechanism of AZ31 Mg alloy.

Finite Element Analysis of Continuous Rotary-Die Equal Channel Angular Pressing (연속 회전 등통로각압축 공정의 유한요소해석)

  • Yoon, Seung-Chae;Seo, Min-Hong;Kim, Hyoung-Seop
    • Transactions of Materials Processing
    • /
    • v.15 no.7 s.88
    • /
    • pp.524-528
    • /
    • 2006
  • Although equal channel angular pressing (ECAP), imposing large plastic shear strain deformation by moving a workpiece through two intersecting channels, is a promising severe plastic deformation method for grain refinement of metallic materials, its batch type characteristic makes ECAP inefficient for multiple-passing. Rotary-die ECAP (RDECAP) proposed by Nishida et al. can achieve high productivity by using continuous processing without taking out the samples from the channel. However, plastic deformation behavior during RD-ECAP has not been investigated. In this study, material plastic flow and strain hardening behavior of the workpiece during RD-ECAP was investigated using the finite element method. It was found that plastic deformation becomes inhomogeneous with the number of passes due to an end effect, which was not found seriously in ECAP. Especially, decreasing corner gap with increasing the number of passes was observed and explained by the strain hardening effect.

Declining Temperature Multistage Deformation Behavior of Nb-Microalloyed Structural Steel (Nb 첨가 구조용강의 감온단속변형)

  • 조상현;오명석;소찬영;유연철
    • Transactions of Materials Processing
    • /
    • v.3 no.4
    • /
    • pp.415-426
    • /
    • 1994
  • Multistage deformation behavior of Nb-microalloyed steel and carbon steel was studied by torsion test with declining temperature T, constant pass strain $\varepsilon_i$, interrupt time $(t_i)$, and varying strain rate $(\.{\varepsilon})$. In the range of $1000^{\circ}C~790^{\circ}C$ and 4.00/sec~0.38/sec, the flow stress at each pass was correlated to the deformation variables. As the finished deformation temperatures are decreased to the range of $790^{\circ}C~900^{\circ}C$, Nb precipitates play an important role on the grain refinement of Nb-microalloyed steel. the flow stress of Nb-microalloyed steel was higher than the carbon steel's while the grain size of Nb-microalloyed steel was smaller than carbon steel below the temperature of $900^{\circ}C$.

  • PDF

Refinement Behavior of Magnesium Powder by Attrition Milling Under Different Condition (어트리션 볼밀링 조건 변화에 따른 마그네슘 분말의 미세화 거동)

  • Yoo, Hyo-Sang;Kim, Yong-Ho;Kim, Jung-Han;Kim, Tae-Kyung;Son, Hyeon-Taek;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.591-598
    • /
    • 2014
  • In this research, magnesium powder was prepared by gas atomizing. Refinement behaviors of magnesium powder produced under different conditions were investigated using a mechanical milling (attrition milling) process. Analyses were performed to assess the characterization and comparison of milled powder with different steel ball sizes and milling times. The powders were analyzed by field emission scanning electron microscope, apparent density and powder fluidity. The particle morphology of the Mg powders changed from spherical particles of feed metals to irregular oval particles, then plate type particles, with an increasing milling time. Because of the HCP structure, deformation occurs due to the existence of the easily breakable C-axis perpendicular to the base, which results in producing plate-type powders. An increase in ball size and the impact energy of the magnesium powder maximizes the effect of refinement. Furthermore, it is possible to improve the apparent density and fluidity according to the smoothness of the surface of the initial powder.