• Title/Summary/Keyword: Refined mesh method

Search Result 44, Processing Time 0.025 seconds

Damage prediction in the vicinity of an impact on a concrete structure: a combined FEM/DEM approach

  • Rousseau, Jessica;Frangin, Emmanuel;Marin, Philippe;Daudeville, Laurent
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.343-358
    • /
    • 2008
  • This article focuses on concrete structures submitted to impact loading and is aimed at predicting local damage in the vicinity of an impact zone as well as the global response of the structure. The Discrete Element Method (DEM) seems particularly well suited in this context for modeling fractures. An identification process of DEM material parameters from macroscopic data (Young's modulus, compressive and tensile strength, fracture energy, etc.) will first be presented for the purpose of enhancing reproducibility and reliability of the simulation results with DE samples of various sizes. The modeling of a large structure by means of DEM may lead to prohibitive computation times. A refined discretization becomes required in the vicinity of the impact, while the structure may be modeled using a coarse FE mesh further from the impact area, where the material behaves elastically. A coupled discrete-finite element approach is thus proposed: the impact zone is modeled by means of DE and elastic FE are used on the rest of the structure. The proposed approach is then applied to a rock impact on a concrete slab in order to validate the coupled method and compare computation times.

Two-Dimensional Simulation of MOS Transistors Using Numerical Method (수치해석 방법에 의한 2차원적인 MOS Transistor의 시뮬레이션에 관한 연구)

  • 정태성;경종민
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.5
    • /
    • pp.93-101
    • /
    • 1985
  • A two-dimensional numerical analysis progranl, called SOMOS ( simulation of MO5 transistors), has been developed for the simulation of MOSFET's with various channel lengths and bias conditions. The finite difference approximation of the fundamental equa-tions are formulated using Newton's method for Poisson's equation and the divergence theorem for the continuity equation. For the solution of the lincariBed equations, SOR (successive over relaxation) method and Gummel's algorithm have been employed, The total simulation time for oar operating point is varying between 30 sec. and 4 min. on VAX 11/780 depending on bias conditions, The nonuniform mesh was generated and refined automatically to account for various bias values and the potential distributions.

  • PDF

Multiresolutional Reconstruction from Contours (윤곽선을 이용한 다중해상도적 복원)

  • 민경하;이인권
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.11
    • /
    • pp.629-654
    • /
    • 2003
  • A new multiresolutional scheme that reconstructs a polygonal mesh from the set of contours is presented. In the first step, we apply a radial gradient method to extract the contours on the sampled slices from a volume data. After classifying the types of the edges on the contours, we represent the contour using the context-free grammar. The polygons between two neighboring contours are generated through the traversal of the derivation trees of the context-free grammar. The polygonal surface of the coarsest resolution is refined through the refinement of the contours, which is executed by casting more rays on the slices. The topologies between the polygonal surfaces of various resolutions are maintained from the fact that the radial gradient method preserves the topologies of the contours of various resolutions. The proposed scheme provides efficient computation and compression methods for the tiling procedure with the feature preservation.

Simplification Method for Lightweighting of Underground Geospatial Objects in a Mobile Environment (모바일 환경에서 지하공간객체의 경량화를 위한 단순화 방법)

  • Jong-Hoon Kim;Yong-Tae Kim;Hoon-Joon Kouh
    • Journal of Industrial Convergence
    • /
    • v.20 no.12
    • /
    • pp.195-202
    • /
    • 2022
  • Underground Geospatial Information Map Management System(UGIMMS) integrates various underground facilities in the underground space into 3D mesh data, and supports to check the 3D image and location of the underground facilities in the mobile app. However, there is a problem that it takes a long time to run in the app because various underground facilities can exist in some areas executed by the app and can be seen layer by layer. In this paper, we propose a deep learning-based K-means vertex clustering algorithm as a method to reduce the execution time in the app by reducing the size of the data by reducing the number of vertices in the 3D mesh data within the range that does not cause a problem in visibility. First, our proposed method obtains refined vertex feature information through a deep learning encoder-decoder based model. And second, the method was simplified by grouping similar vertices through K-means vertex clustering using feature information. As a result of the experiment, when the vertices of various underground facilities were reduced by 30% with the proposed method, the 3D image model was slightly deformed, but there was no missing part, so there was no problem in checking it in the app.

Prediction of Tidal Flow Changes Caused by Coastal Reclamation in Harbor System (해안 매립에 따른 항내 조류변화 예측)

  • Park, Seok-Soon;Park, Jae-Woo
    • Journal of Environmental Impact Assessment
    • /
    • v.5 no.1
    • /
    • pp.31-45
    • /
    • 1996
  • This paper presents the results from a hydrodynamic model study to predict the impacts of coastal reclamation in Pusan harbor system using RMA2 which is a tidal flow model of the US Army Corps of Engineers' TABS-2 system. A finite element mesh was constructed and refined to cover the complicated geometry of Pusan harbor system and the proposed reclamation area. The model was calibrated to tidal elevations and currents measured during spring fall syzygys. Under the three different tidal conditions including summer winter syzygys, spring fall quarters, and summer winter quarters, the model predictions were compared with the field measurements both in tidal elevation and current. In all cases, there were excellent agreements between the model predictions and the field measurements. The validated model was then used to predict the changes in tidal current and elevation that might occur due to the coastal reclamation. It was predicted that there would be no change in tidal elevation of this system after the reclamation. In tidal current, however, discernible changes were predicted near the proposed reclamation area both in magnitude and direction.

  • PDF

Inductance Extraction of Microstrip Lines using Adaptive PEEC Grid (적응 PEEC 격자를 이용한 마이크로스트립의 인덕턴스 계산)

  • Kim, Han;Ahn, Chang-Hoi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.823-829
    • /
    • 2003
  • For high frequency microstrip line modelling, a fast inductance extraction technique using an adaptive PEEC(partial element equivalent circuit) grid is proposed. The grid refinement technique is based on the current distribution depend on the excitation frequencies and the geometry of the microstrip lines. The adaptive ids are refined mainly in the area where heavy currents reside. This technique is applied to the inductance extraction of the microstrip lines. The results show fast convergence, and this adaptive technique is efficient to reduce computing time and the number of grids.

Detail-design Guidance for the Openings on the Web Structure Supporting the Deck (갑판지지 웨브 구조에서의 개구부 상세설계기준 정립)

  • Kim, Sung-Chan;Lee, Kyung-Seok;Song, Jae-Young;Kim, Kyung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.612-618
    • /
    • 2007
  • There are a lot of openings, holes and slots in ship structural members. It is not easy to solve the troubles around the openings adequately at the detail design stage, because there are a lot of concerning locations. There are not also clear design rules of classification societies and it is not possible to apply direct calculation for all the concerning members. Therefore, it is necessary to set up simplified approach such as a standard or guidance in order to decide the opening design quickly. For this study, guidance and regulations of each classification and several companies were surveyed. Grillage analysis and the refined mesh method were used to evaluate the strength around hole considering boundary condition and more detailed member arrangement. As a result, the standard for opening design was established and verified.

Object-Based Integral Imaging Depth Extraction Using Segmentation (영상 분할을 이용한 객체 기반 집적영상 깊이 추출)

  • Kang, Jin-Mo;Jung, Jae-Hyun;Lee, Byoung-Ho;Park, Jae-Hyeung
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.2
    • /
    • pp.94-101
    • /
    • 2009
  • A novel method for the reconstruction of 3D shape and texture from elemental images has been proposed. Using this method, we can estimate a full 3D polygonal model of objects with seamless triangulation. But in the triangulation process, all the objects are stitched. This generates phantom surfaces that bridge depth discontinuities between different objects. To solve this problem we need to connect points only within a single object. We adopt a segmentation process to this end. The entire process of the proposed method is as follows. First, the central pixel of each elemental image is computed to extract spatial position of objects by correspondence analysis. Second, the object points of central pixels from neighboring elemental images are projected onto a specific elemental image. Then, the center sub-image is segmented and each object is labeled. We used the normalized cut algorithm for segmentation of the center sub-image. To enhance the speed of segmentation we applied the watershed algorithm before the normalized cut. Using the segmentation results, the subdivision process is applied to pixels only within the same objects. The refined grid is filtered with median and Gaussian filters to improve reconstruction quality. Finally, each vertex is connected and an object-based triangular mesh is formed. We conducted experiments using real objects and verified our proposed method.

A Particle Tracking Method for the Lagrangian-Eulerian Finite Element Method in 3-D Subsurface System (3차원 지표하 시스템에서 Lagrangian-Eulerian 유한요소법에 대한 입자추적 알고리즘)

  • Lee, Jae-Young;Kang, Mee-A
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.205-215
    • /
    • 2009
  • The conventional numerical models to analyze flow in subsurface porous media under the transient state usually generate numerical oscillation and unstability due to local flux domain for critical cases such as infiltration into initially dry soil during rainfall period. In this case, it is required refined mesh and small time step, but it decrease efficiency of computation. In this study, numerical unstability in discontinuity domain is removed by applying particle tracking algorithm to simulate unsteady subsurface flow with inflow boundary condition. Finally the hybrid LE FEM improving numerical stability is proposed. The hypothetical domains with unsteady uniform and nonuniform flow field were used to demonstrated algorithm verification. In comparison with analytic solution, we obtained reasonable results and conducted simulation of hypothetical 3-D recharge/pumping area. The proposed algorithm can simulate saturated/unsaturated porous media with more practical problems and will greatly contribute to accuracy and stability of numerical computation.

Numerical Simulations of Crack Initiation and Propagation Using Cohesive Zone Elements (응집영역요소를 이용한 균열진전 모사)

  • Ha, Sang-Yul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.519-525
    • /
    • 2009
  • In this study a cohesive zone model was used to simulate the delamination phenomena which occurs by a successive crack initiation and propagation in composite laminates. The cohesive zone model was incorporated to the classical finite element method via cohesive element formulation and then implemented into the user-subroutine UEL of a commercial finite element program Abaqus. To validate the formulation and implementation of the cohesive element the finite element results were compared with the experimental data of double cantilever beam and end notched flexure tests. The numerical results well agree with the experimental load-displacement curves. Also the effect of the elastic stiffness and the size of the cohesive element on the global load-displacement curves were studied numerically. To minimize the mesh-dependency of the crack propagation path and eliminate the zig-zag patterns in the load-displacement curve, cohesive elements should be refined at the crack-tip.