Multiresolutional Reconstruction from Contours

윤곽선을 이용한 다중해상도적 복원

  • Published : 2003.12.01

Abstract

A new multiresolutional scheme that reconstructs a polygonal mesh from the set of contours is presented. In the first step, we apply a radial gradient method to extract the contours on the sampled slices from a volume data. After classifying the types of the edges on the contours, we represent the contour using the context-free grammar. The polygons between two neighboring contours are generated through the traversal of the derivation trees of the context-free grammar. The polygonal surface of the coarsest resolution is refined through the refinement of the contours, which is executed by casting more rays on the slices. The topologies between the polygonal surfaces of various resolutions are maintained from the fact that the radial gradient method preserves the topologies of the contours of various resolutions. The proposed scheme provides efficient computation and compression methods for the tiling procedure with the feature preservation.

본 논문에서는 윤곽선들의 집합으로부터 다각형 곡면을 복원하는 다중해상도적 방법을 제안한다. 그 방법의 첫 단계에서는 방사 조사법을 적용해서 체적 데이타로부터 추출된 여러 장의 영상들로부터 윤곽선을 추출한다. 그리고 이 윤곽선을 구성하는 선분들의 유형들을 분류한 다음, 이를 이용해서 윤곽선을 context-free 문법으로 표현하는 방법을 제시한다. 두 번째 단계에서는 이웃하는 두 윤곽선들 사이에 다각형들을 생성하는 것으로, 이를 위하여 context-free 문법의 유도 트리를 검색함으로써 두 윤곽선들 사이에서 서로 대응되는 꼭지점과 선분을 찾는 방법을 제시한다. 이러한 단계를 거쳐서 생성된 가장 낮은 해상도의 다각형 곡면은 각 윤곽선을 세분화함으로써 더 높은 해상도의 다각형 곡면으로 세분화된다. 여기서 윤곽선은 각 영상에서 더 많은 광선을 방사함으로써 세분화된다. 본 연구에서는 방사 조사법을 이용해서 추출된 다양한 해상도의 윤곽선들의 연결도가 일정하게 유지됨을 이용해서 다양한 해상도의 다각형 곡면들의 연결도는 일정하게 유지됨을 보장한다. 제안된 방법은 효율적인 복원과 복원된 물체의 외형적인 특징을 보장하는 압축 방법을 제공한다.

Keywords

References

  1. Klein, R., Schilling, A., and Strasser, W., 'Reconstruction and simplification of surface from contours,' Proceedings of Pacific Graphics '99, pp. 198-207, 1999 https://doi.org/10.1109/PCCGA.1999.803363
  2. Garland, M. and Heckbert, P., 'Surface Simplification using Quadric Error Metrics,' Proceedings of SIGGRAPH 97, pp. 209-216, 1999 https://doi.org/10.1145/258734.258849
  3. Fujimura, K., 'Shape reconstruction from contours using isotopic deformation,' Graphical Models and Image Processing, Vol. 61, No. 3, pp. 127-147, 1999 https://doi.org/10.1006/gmip.1999.0494
  4. Garcia, E. Gueret, P., Bennet, M., Corday, E., Zwehl, W., Meerbaum, S., Corday, S., Swan, H., and Berman, D., 'Real-time computerization of two-dimensional echocardiography,' Am. Heart J., 101:783, 1981 https://doi.org/10.1016/0002-8703(81)90616-5
  5. Buda, A. J., Delp, E. J, Meyer, C. R., Jenkins, J. M., Smith, D. N., Bookstein, F. L., and Pitt, B., 'Automatic computer processing of digital 2-dimensional echocardiograms,' Am. J. Cardiol, 52:384, 1983 https://doi.org/10.1016/0002-9149(83)90144-3
  6. Meyers, D., Skinner, S., and Sloan, K., 'Surface from contours,' ACM Transactions on Graphics, Vol. 11, No. 3, pp. 228-258, 1992 https://doi.org/10.1145/130881.131213
  7. Pitas, I., Digital Image Processing Algorithms, Prentice Hall, 1993
  8. Lorensen, W. E. and Cline, H. E., 'Marching Cubes: A High Resolution 3D Surface Construction Algorithm,' Computer Graphics, Vol. 21, No. 4, pp. 163-169, 1987 https://doi.org/10.1145/37402.37422
  9. Fuch, H., Kedem, Z. M., and Uselton, S. P., 'Optimal surface reconstruction from planar contours,' Communications of ACM, Vol. 20, No. 10, pp. 693-702, 1977 https://doi.org/10.1145/359842.359846
  10. Boissonnat, J. D., 'Shape reconstruction from planar cross sections,' Computer Vision,Graphics,and Image Processing, Vol. 44, pp. 1-29, 1988 https://doi.org/10.1016/S0734-189X(88)80028-8
  11. Ekoule, A. B., Peyrin, F. C. and Odet, C. L., 'A triangulation algorithm from arbitrary shaped multiple planar contours,' ACM Transactions on Graphics, Vol. 10, No. 2, pp. 182-199, 1991 https://doi.org/10.1145/108360.108363
  12. Hoppe, H., 'Progressive Mes,' Proceedings of SIGGRAPH 96, pp. 99-108, 1996 https://doi.org/10.1145/237170.237216
  13. Bajaj, C. L., Coyle, E. J., and Lin, K. N., 'Arbitrary Topology shape reconstruction from planar cross sections,' Graphical Models and Image Processing, Vol. 58, No. 6, pp. 524-543, 1996 https://doi.org/10.1006/gmip.1996.0044
  14. Meyer, D., 'Multiresoluation tiling,' Computer Graphics Forum, Vol. 13, No. 5, pp. 325-340, 1994 https://doi.org/10.1111/1467-8659.1350325
  15. Cong, G. and Parvin, B., 'An algebraic soluation to surface recovery from cross-sectional contours,' Graphical Models and Image Processing, Vol. 61, No. 4, pp. 222-243, 1999 https://doi.org/10.1006/gmip.1999.0499
  16. Schilling, A. and Klein, R., 'Fast generation of multiresolution surface from contours,' Proceedings of Eurographics Workshop on Visualization in Scientific Computing, pp. 35-46, 1998
  17. Fix, J. D. and Lander, R. E., 'Multiresolution based refinement to accelerate surface reconstruction from polygons,' Computational Geometry, Vol. 13, No. 1, pp. 49-64, 1999 https://doi.org/10.1016/S0925-7721(99)00008-5
  18. Christiansen, H. N. and Sederberg, T. W., 'Conversion of complex contour line definitions into polygonal element mosaics,' Proceedings of SIGGRAPH 78, pp. 187-192, 1978 https://doi.org/10.1145/800248.807388