• Title/Summary/Keyword: Reference model

Search Result 4,311, Processing Time 0.031 seconds

Reference Model Feedback Control and Stability Evaluation for Control System with Hard Non-linearities (견비선형을 갖는 제어시스템에 대한 기준모델 피드백제어 및 안정성평가)

  • Jung, Yu-Chul;Lee, Gun-Bok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.72-78
    • /
    • 2006
  • The paper proposes reference model error feedback control scheme for motion control system with hard non-linear components as like saturation and dead-zone in plant input part. Additionally, the plant has the system uncertainty effected by plant model parameter deviation and disturbance. The control algorithm uses the reference model to apply additional feedback loop with the error between reference model output and actual output effected by disturbance and non-linear components. And the stability evaluation based on Popov stability and controller design method are formulated to be performed. The effectiveness of the proposed scheme is examined by simulations. The results are proven by reasonable performances following reference model responses with good disturbance rejection performance without over-tuning of controller.

Reference Priors in a Two-Way Mixed-Effects Analysis of Variance Model

  • Chang, In-Hong;Kim, Byung-Hwee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.2
    • /
    • pp.317-328
    • /
    • 2002
  • We first derive group ordering reference priors in a two-way mixed-effects analysis of variance (ANOVA) model. We show that posterior distributions are proper and provide marginal posterior distributions under reference priors. We also examine whether the reference priors satisfy the probability matching criterion. Finally, the reference prior satisfying the probability matching criterion is shown to be good in the sense of frequentist coverage probability of the posterior quantile.

  • PDF

Active Vibration Control of a Opened Box Structure By a Model Reference Neuro-Controller (모델기반 신경망 제어기를 이용한 열린 박스 구조물의 진동제어)

  • Jang, Seung-Ik;Shen, Yun-De;Kee, Chang-Doo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1602-1607
    • /
    • 2003
  • Vibration causes noise and sometimes makes structure unstable. Especially, due to the efforts of lightening, deformation of flexible structure is increased in its shape. Just a little disturbance can cause vibration and low damping ratio makes residual vibration last long time. This research is concerned with the model reference neuro-controller design for the vibration suppression of smart structures. By using a model reference neurocontroller, which is one of the algorithms of adaptive control, we performed an adaptive control of flexible cantilever plate and opened box structure with piezoelectric materials. The proposed adaptive vibration control algorithm, a model reference neuro-controller, was proved in its effectiveness by applying to an opened box structure. The model reference neuro-controller is implemented with DSP, and the real-time adaptive vibration control experiment results confirm that the model reference neuro-controller is reliable.

  • PDF

A Trajectory Tracking Control of Wheeled Mobile Robot Using a Model Reference Adaptive Fuzzy Controller (모델참조 적응 퍼지제어기를 이용한 휠베이스 이동 로봇의 궤적 추적 제어)

  • Kim, Seung-Woo;Seo, Ki-Sung;Cho, Young-Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.711-719
    • /
    • 2009
  • This paper presents a design scheme of torque control for wheeled mobile robot(WMR) to asymptotically track the target reference trajectory. By considering the kinematic model of WMR, trajectory tracking control generates the desired tracking trajectory, which is transformed into the command velocity vector for the real WMR to track the target reference trajectory. The dynamic equation of the state error between the target reference trajectory and the desired tracking trajectory is represented by Takagi-Sugeno fuzzy model, and this model is used as the reference model for the real mobile robot error dynamics to follow. The control parameters are updated by adaptive laws that are designed for the error states of the real WMR to asymptotically follow the states of reference error model for the desired tracking trajectory. The proposed control is applied to a typical wheeled mobile robot and simulation studies are carried out to verify the validity and effectiveness of the control scheme.

Neutral Reference Model for Engineering Change Propagation in Global Top-down Modeling Approach

  • Hwang, Jin-Sang;Mun, Du-Hwan;Han, Soon-Hung
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.81-89
    • /
    • 2007
  • As the modular production is an important issue in globalized manufacturing industries, sub modules or parts of the final product are provided by many suppliers. Some part suppliers design their own products for themselves. In some cases, part supplier may provide the same type product to multiple 1-tier companies. Because all suppliers and 1-tier companies can not use the same CAD system in general case, the engineering change in the CAD model of one company could not propagate to related CAD models of other companies directly. Although they use the same CAD system, it is hard to share their CAD model with each other because of company security policy. In this paper, the neutral reference model, which consists of the neutral skeleton model and the external reference model, is proposed to apply a global top-down modeling approach to collaborating companies.

A Determination of the Reference Model for the Model Following System using an Expert System (전문가 시스템을 이용한 모델 추종 시스템의 기준 모델 선정)

  • Moon, Dong-Wook;Hwang, Young-Moon;Kang, Young-Ho;Lee, Hoo-Min;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1069-1072
    • /
    • 1996
  • In modern control engineering, the model following system is a typical method. The model following system's performance is due to algorithm of control law, accuracy of modeling to the plant, and dynamics of the reference model. But the determination of the reference model depends on knowledge of an expert. Using an expert system, the determination method of the reference model was proposed in this paper. So, the reference model can be selected by user who has no Knowledge of dynamics and parameters.

  • PDF

Reference Model Following Self-Organizing Controller (기준모델 추종 자기 구성 제어기)

  • Kwon, Choon-Ki;Bae, Sang-Wook;Park, Tae-Hong;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.329-331
    • /
    • 1993
  • A new RMFSOC(Reference Model Following Self-Organizing Controller) is proposed. It is composed by adding the reference model and decision rule to the Mamdani's SOC. The reference model is introduced to explicitly specify the control performance. The self-organizing level of the RMFSOC organizes the control rule which makes the process output follow the reference output generated by the reference model. In order to avoid unnecessary control rule modification, a decision rule is also introduced to determine whether the control rule modification is needed or not.

  • PDF

A Study on Application of Adaptive Control Theory to D.C. Motor Speed Control (직류전동기의 속도제어에 대한 적응제어이론의 적용에 관한 연구)

  • Kim, Seong-Guk;Kim, Do-Hyeon;Choe, Gye-Geun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.3
    • /
    • pp.35-41
    • /
    • 1981
  • In this paper, the application of model reference adaptive control theory to the D.C motor speed control using the microprocessor is studied. It is shown that with the use of an adaptive control algorithm the error between output of the motor and the reference model, which is approximated to first order, can be conve to zero. By computer simulation and the practical implementation with the microprocessor M 6800, can be concluded that the adaptive control system adapts well to the rapid change of the load and reference inputs.

  • PDF

CONFIGYRATION OF A ROBUST MODEL FOLLOWING SYSTEM WITH AN ADAPTIVE IDENTFIER

  • Saito, Tomoaki;Kimura, Mitsuyoshi;Kikuta, Akira;Kamiya, Yuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.548-552
    • /
    • 1994
  • The robust compensation controller, which has been proposed by one of the authors and is based on the fundamental principle of making the plant follow the reference model, consists of the reference model and the robust compensator. The reference model is constructed by using the nominal model of the plant and determines the input-output properties of the resultant system. The robust compensator is obtained as a solution of the mixed sensitivity problem in H infinity control theory. Therefore the resultant system is of low sensitivity and robust stability. In the case where uncertainty does not occur in the plant, the plant follows perfectly the reference model. Therefore, in the case where uncertainty occurs in the plant, we propose the system configuration which improves the following accuracy without replacing the 개bust compensator but by identifying, the plant and reconstructing the reference model.

  • PDF

Speed-Sensorless Control of an Induction Motor using Model Reference Adaptive Fuzzy System (기준 모델 적응 퍼지 시스템을 이용한 유도전동기의 속도 센서리스 제어)

  • Choi, Sung-Dae;Kang, Sung-Ho;Ko, Bong-Woon;Nam, Hoon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2064-2066
    • /
    • 2002
  • This paper proposes Model Reference Adaptive Fuzzy System(MRAFS) using Fuzzy Logic Controller(FLC) as a adaptive laws in Model Reference Adaptive System(MRAS) in order to realize the speed-sensorless control of an induction motor. MRAFS estimates the speed of an induction motor with a rotor flux of a reference model and adjustable model in MRAS. Fuzzy logic controller reduces the error of the rotor flux between the reference model and the adjustable model using the error and the change of error as the input of FLC. The computer simulation is executed to verify the propriety and the effectiveness of the proposed system.

  • PDF