• 제목/요약/키워드: Reeb vector field

검색결과 17건 처리시간 0.016초

*-CONFORMAL RICCI SOLITONS ON ALMOST COKÄHLER MANIFOLDS

  • Tarak Mandal;Avijit Sarkar
    • 대한수학회논문집
    • /
    • 제38권3호
    • /
    • pp.865-880
    • /
    • 2023
  • The main intention of the current paper is to characterize certain properties of *-conformal Ricci solitons on non-coKähler (𝜅, 𝜇)-almost coKähler manifolds. At first, we find that there does not exist *-conformal Ricci soliton if the potential vector field is the Reeb vector field θ. We also prove that the non-coKähler (𝜅, 𝜇)-almost coKähler manifolds admit *-conformal Ricci solitons if the potential vector field is the infinitesimal contact transformation. It is also studied that there does not exist *-conformal gradient Ricci solitons on the said manifolds. An example has been constructed to verify the obtained results.

CURVATURE HOMOGENEITY AND BALL-HOMOGENEITY ON ALMOST COKӒHLER 3-MANIFOLDS

  • Wang, Yaning
    • 대한수학회보
    • /
    • 제56권1호
    • /
    • pp.253-263
    • /
    • 2019
  • Let M be a curvature homogeneous or ball-homogeneous non-$coK{\ddot{a}}hler$ almost $coK{\ddot{a}}hler$ 3-manifold. In this paper, we prove that M is locally isometric to a unimodular Lie group if and only if the Reeb vector field ${\xi}$ is an eigenvector field of the Ricci operator. To extend this result, we prove that M is homogeneous if and only if it satisfies ${\nabla}_{\xi}h=2f{\phi}h$, $f{\in}{\mathbb{R}}$.

BETA-ALMOST RICCI SOLITONS ON ALMOST COKÄHLER MANIFOLDS

  • Kar, Debabrata;Majhi, Pradip
    • Korean Journal of Mathematics
    • /
    • 제27권3호
    • /
    • pp.691-705
    • /
    • 2019
  • In the present paper is to classify Beta-almost (${\beta}$-almost) Ricci solitons and ${\beta}$-almost gradient Ricci solitons on almost $CoK{\ddot{a}}hler$ manifolds with ${\xi}$ belongs to ($k,{\mu}$)-nullity distribution. In this paper, we prove that such manifolds with V is contact vector field and $Q{\phi}={\phi}Q$ is ${\eta}$-Einstein and it is steady when the potential vector field is pointwise collinear to the reeb vectoer field. Moreover, we prove that a ($k,{\mu}$)-almost $CoK{\ddot{a}}hler$ manifolds admitting ${\beta}$-almost gradient Ricci solitons is isometric to a sphere.

Real Hypersurfaces with k-th Generalized Tanaka-Webster Connection in Complex Grassmannians of Rank Two

  • Jeong, Imsoon;Lee, Hyunjin
    • Kyungpook Mathematical Journal
    • /
    • 제57권3호
    • /
    • pp.525-535
    • /
    • 2017
  • In this paper, we consider two kinds of derivatives for the shape operator of a real hypersurface in a $K{\ddot{a}}hler$ manifold which are named the Lie derivative and the covariant derivative with respect to the k-th generalized Tanaka-Webster connection ${\hat{\nabla}}^{(k)}$. The purpose of this paper is to study Hopf hypersurfaces in complex Grassmannians of rank two, whose Lie derivative of the shape operator coincides with the covariant derivative of it with respect to ${\hat{\nabla}}^{(k)}$ either in direction of any vector field or in direction of Reeb vector field.

GRADIENT RICCI ALMOST SOLITONS ON TWO CLASSES OF ALMOST KENMOTSU MANIFOLDS

  • Wang, Yaning
    • 대한수학회지
    • /
    • 제53권5호
    • /
    • pp.1101-1114
    • /
    • 2016
  • Let ($M^{2n+1}$, ${\phi}$, ${\xi}$, ${\eta}$, g) be a (k, ${\mu}$)'-almost Kenmotsu manifold with k < -1 which admits a gradient Ricci almost soliton (g, f, ${\lambda}$), where ${\lambda}$ is the soliton function and f is the potential function. In this paper, it is proved that ${\lambda}$ is a constant and this implies that $M^{2n+1}$ is locally isometric to a rigid gradient Ricci soliton ${\mathbb{H}}^{n+1}(-4){\times}{\mathbb{R}}^n$, and the soliton is expanding with ${\lambda}=-4n$. Moreover, if a three dimensional Kenmotsu manifold admits a gradient Ricci almost soliton, then either it is of constant sectional curvature -1 or the potential vector field is pointwise colinear with the Reeb vector field.

HOPF HYPERSURFACES OF THE HOMOGENEOUS NEARLY KÄHLER 𝕊3 × 𝕊3 SATISFYING CERTAIN COMMUTING CONDITIONS

  • Xiaomin, Chen;Yifan, Yang
    • 대한수학회보
    • /
    • 제59권6호
    • /
    • pp.1567-1594
    • /
    • 2022
  • In this article, we first introduce the notion of commuting Ricci tensor and pseudo-anti commuting Ricci tensor for Hopf hypersurfaces in the homogeneous nearly Kähler 𝕊3 × 𝕊3 and prove that the mean curvature of hypersurface is constant under certain assumptions. Next, we prove the nonexistence of Ricci soliton on Hopf hypersurface with potential Reeb vector field, which improves a result of Hu et al. on the nonexistence of Einstein Hopf hypersurfaces in the homogeneous nearly Kähler 𝕊3 × 𝕊3.

PSEUDO-RIEMANNIAN SASAKI SOLVMANIFOLDS

  • Diego Conti;Federico A. Rossi;Romeo Segnan Dalmasso
    • 대한수학회지
    • /
    • 제60권1호
    • /
    • pp.115-141
    • /
    • 2023
  • We study a class of left-invariant pseudo-Riemannian Sasaki metrics on solvable Lie groups, which can be characterized by the property that the zero level set of the moment map relative to the action of some one-parameter subgroup {exp tX} is a normal nilpotent subgroup commuting with {exp tX}, and X is not lightlike. We characterize this geometry in terms of the Sasaki reduction and its pseudo-Kähler quotient under the action generated by the Reeb vector field. We classify pseudo-Riemannian Sasaki solvmanifolds of this type in dimension 5 and those of dimension 7 whose Kähler reduction in the above sense is abelian.