• Title/Summary/Keyword: Redundant binary adder

Search Result 12, Processing Time 0.029 seconds

A Design of the Redundant Binary Coded Decimal Adder for the Carry-Free Binary Coded Decimal Addition (Redundant 십진코드를 이용하여 십진 자리간 Carry 전파를 제거한 십진 Adder 설계)

  • Je, Jung-Min;Chung, Tae-Sang
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.11
    • /
    • pp.491-494
    • /
    • 2006
  • In the adder design, reduction of the delay of the carry propagation or ripple is the most important consideration. Previously, it was introduced that, if a redundant number system is adopted, the carry propagation is completely eliminated, with which addition can be done in a constant time, without regarding to the count of the digits of numbers involved in addition. In this paper, a RBCD(Redundant Binary Coded Decimal) is adopted to code 0 to 11, and an efficient and economic carry-free BCD adder is designed.

A Novel Redundant Binary Montgomery Multiplier and Hardware Architecture (새로운 잉여 이진 Montgomery 곱셈기와 하드웨어 구조)

  • Lim Dae-Sung;Chang Nam-Su;Ji Sung-Yeon;Kim Sung-Kyoung;Lee Sang-Jin;Koo Bon-Seok
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.4
    • /
    • pp.33-41
    • /
    • 2006
  • RSA cryptosystem is of great use in systems such as IC card, mobile system, WPKI, electronic cash, SET, SSL and so on. RSA is performed through modular exponentiation. It is well known that the Montgomery multiplier is efficient in general. The critical path delay of the Montgomery multiplier depends on an addition of three operands, the problem that is taken over carry-propagation makes big influence at an efficiency of Montgomery Multiplier. Recently, the use of the Carry Save Adder(CSA) which has no carry propagation has worked McIvor et al. proposed a couple of Montgomery multiplication for an ideal exponentiation, the one and the other are made of 3 steps and 2 steps of CSA respectively. The latter one is more efficient than the first one in terms of the time complexity. In this paper, for faster operation than the latter one we use binary signed-digit(SD) number system which has no carry-propagation. We propose a new redundant binary adder(RBA) that performs the addition between two binary SD numbers and apply to Montgomery multiplier. Instead of the binary SD addition rule using in existing RBAs, we propose a new addition rule. And, we construct and simulate to the proposed adder using gates provided from SAMSUNG STD130 $0.18{\mu}m$ 1.8V CMOS Standard Cell Library. The result is faster by a minimum 12.46% in terms of the time complexity than McIvor's 2 method and existing RBAs.

A Design of 16${\times}$16-bit Redundant Binary MAC Using 0.25 ${\mu}{\textrm}{m}$ CMOS Technology

  • Kim, Tae-Min;Shin, Gun-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.1
    • /
    • pp.122-128
    • /
    • 2003
  • In this paper, a 16${\times}$16-bit Multiplier and Accumulator (MAC) is designed using a Redundant Binary Adder (RBA) circuit so that it can make a fast addition of the Redundant Binary Partial Products (RB_PP's) by using Wallace-tree structure. Because a RBA adds two RB numbers, it acts as a 4-2 compressor, which reduces four inputs to two output signals. We propose a method to convert the Redundant Binary (RB) representation into the 2's complement binary representation. Instead of using the conventional full adders, a more efficient RB number to binary number converter can be designed with new conversion method.

The Design of A Fast Two′s Complement Adder with Redundant Binary Arithmetic (RB 연산을 이용한 고속 2의 보수 덧셈기의 설계)

  • Lee, Tae-Uk;Jo, Sang-Bok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.5
    • /
    • pp.55-65
    • /
    • 2000
  • In this paper a new architecture of 24-bit two's complement adder is designed by using RB(Redundant Binary) arithmetic which has the advantage of CPF(Carry-Propagation-Free). A MPPL(Modified PPL) XOR/XNOR gate is applied to improve a TC2RB(Two's Complement to RB SUM converter) speed and to reduce the number of transistors, and we proposed two types adder which used a fast RB2TC(RB SUM to Two's Complement converter). The property of two types adder is followings. The improvement of TYPE 1 adder speed is archived through the use of VGS(Variable Group Select) method and TYPE 2 adder is through the use of a 64-bit GCG(Group Change bit Generator) circuit and a 8-bit TYPE 1 adder. For 64-bit, TYPE 1 adder can be expected speed improvement of 23.5%, 25.7% comparing with the CLA and CSA, and TYPE 2 adder can be expected 41.2%, 45.9% respectively. The propagation delay of designed 24-bit TYPE 1 adder is 1.4ns and TYPE 2 adder is 1.2ns. The implementation is highly regular with repeated modules and is very well suited for microprocessor systems and fast DSP units.

  • PDF

A Design of Radix-2 SRT Floating-Point Divider Unit using ]Redundant Binary Number System (Redundant Binary 수치계를 이용한 radix-2 SRT부동 소수점 제산기 유닛 설계)

  • 이종남;신경욱
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.3
    • /
    • pp.517-524
    • /
    • 2001
  • This paper describes a design of radix-2 SRT divider unit, which supports IEEE-754 floating-point standard, using redundant binary number system (RBNS). With the RBNS, the partial quotient decision logic can operate about 20-% faster, as well as can be implemented with a simple hardware when compared to the conventional methods based on two's complement arithmetic. By using a new redundant binary adder proposed in this paper, the mantissa divider is efficiently implemented, thus resulting in about 20% smaller area than other works. The divider unit supports double precision format, five exceptions and four rounding modes. It was verified with Verilog HDL and Verilog-XL.

  • PDF

Hybrid FFT processor design using Parallel PD adder circuit (병렬 PD가산회로를 이용한 Hybrid FFT 연산기 설계)

  • 김성대;최전균;안점영;송홍복
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.499-503
    • /
    • 2000
  • The use of Multiple-Valued FFT(Fast fourier Transform) is extended from binary to multiple-valued logic(MVL) circuits. A multiple-valued FFT circuit can be implemented using current-mode CMOS techniques, reducing the transitor, wires count between devices to half compared to that of a binary implementation. For adder processing in FFT, We give the number representation using such redundant digit sets are called redundant positive-digit number representation and a Redundant set uses the carry-propagation-free addition method. As the designed Multiple-valued FFT internally using PD(positive digit) adder with the digit set 0,1,2,3 has attractive features on speed, regularity of the structure and reduced complexities of active elements and interconnections. for the mutiplier processing, we give Multiple-valued LUT(Look up table)to facilitate simple mathmatical operations on the stored digits. Finally, Multiple-valued 8point FFT operation is used as an example in this paper to illuatrates how a multiple-valued FFT can be beneficial.

  • PDF

Multiplexed Optical Correlation Filter for Optical Parallel Addition Based on Symbolic Substitution with Redundant Binary Number (기호치환을 기초로 한 잉여 이진수 광병렬 가산용 다중 광상관 필터)

  • 노덕수;조웅호;김정우;이하운;김수중
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.3
    • /
    • pp.109-119
    • /
    • 1996
  • We propsoed a multiplexed optical correlation filter method for an optical parallel addition based on symbolic substitution. In the proposed mthod, we used redundant binary number which was easy to minimize the number of the symbolic substitution rules. We chose MACE filter which had very low sidelobes and good correlation peak compared with SDF filter as the optical correlation recognition filter and encoded input numbers properly to increase the discrimination capability. In order to minimize the number of symbolic substitution rules, sixteen input patterns were divided into six groups of the same addition results and six filters for recognizing the input patterns were used. these filters were multiplexed in two MMACE filter planes and the corresponding substitution method was proposed. Through the computer simulation, we confirmed the proposed method was suitable to implement the optical parallel adder.

  • PDF

Design of Redundant Binary Adder based on Memristor-CMOS (멤리스터-CMOS 기반의 잉여 이진 가산기 설계)

  • Ahn, Yeongyu;Lee, Sang-Jin;Kim, Seokman;Eshraghian, Kamran;Cho, Kyoungrok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.67-74
    • /
    • 2014
  • This paper presents a memristor-CMOS based RBSD adder. Conventional RBSD adders suffer bigger hardware due to the extra logic handling larger number of bits. The purpose of this paper is to improve the silicon surface area and the computation delay of conventional RBSD adders. The proposed method employs memristor-CMOS based circuit. The implementation results shows that the proposed memristor-CMOS based RBSD adder saves the cell area by 45%, and reduces time delay 24% compared to conventional RBSD adders. The proposed RBSD adder design can bring further area saving for large scale designs.

Fast RSA Montgomery Multiplier and Its Hardware Architecture (고속 RSA 하드웨어 곱셈 연산과 하드웨어 구조)

  • Chang, Nam-Su;Lim, Dae-Sung;Ji, Sung-Yeon;Yoon, Suk-Bong;Kim, Chang-Han
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.1
    • /
    • pp.11-20
    • /
    • 2007
  • A fast Montgomery multiplication occupies important to the design of RSA cryptosystem. Montgomery multiplication consists of two addition, which calculates using CSA or RBA. In terms of CSA, the multiplier is implemented using 4-2 CSA o. 5-2 CSA. In terms of RBA, the multiplier is designed based on redundant binary system. In [1], A new redundant binary adder that performs the addition between two binary signed-digit numbers and apply to Montgomery multiplier was proposed. In this paper, we reconstruct the logic structure of the RBA in [1] for reducing time and space complexity. Especially, the proposed RB multiplier has no coupler like the RBA in [1]. And the proposed RB multiplier is suited to binary exponentiation as modified input and output forms. We simulate to the proposed NRBA using gates provided from SAMSUNG STD130 $0.18{\mu}m$ 1.8V CMOS Standard Cell Library. The result is smaller by 18.5%, 6.3% and faster by 25.24%, 14% than 4-2 CSA, existing RBA, respectively. And Especially, the result is smaller by 44.3% and faster by 2.8% than the RBA in [1].

Symbolic Substitution Based on Optical Correlator for Optical Parallel Addition with Redundant Binary Number (잉여 이진수 광병렬 가산을 위한 광상관 기호치환)

  • 노덕수;김정우;조웅호;김수중
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.1
    • /
    • pp.269-280
    • /
    • 1996
  • We proposed a symbolic substitution method based on an optical correlator for an optical parallel addition. In the proposed symbolic substitution method, we used redundant binary number of the symbolic substitution rules as a number system and chose MAC3E filter which had very low sidelobes and good correlation peak compared with SDF filter as the optical correlation filter. We encoeded input numbers property to increase the discrimination capability and divided inpt patterns into 5 groups of the same addition results to minimize the number of symbolic substitution rules. Through the computer simulation, we confirmed the proposed method was suitable to implement the optical parallel adder.

  • PDF