RB 연산을 이용한 고속 2의 보수 덧셈기의 설계

The Design of A Fast Two′s Complement Adder with Redundant Binary Arithmetic

  • 이태욱 (울산대학원 전자공학 및 자동화 공학부) ;
  • 조상복 (울산대학원 전기전자 및 자동화 공학부)
  • 발행 : 2000.05.01

초록

본 논문에서는 CPF(Carry-Propagation-Free)의 특성을 갖는 RB(Redundant Binary)연산을 이용한 새로운 구조의 24비트 2의 보수 덧셈기를 설계하였다. TC2RB(Two's Complement to RB SUM converter)의 속도와 트랜지스터 개수를 줄이기 위해 MPPL(Modifed PPL) XOR/XNOR 게이트를 제안하고 고속 RB2TC(RB SUM to Two's Complement converter)를 사용한 두 가지 형태의 덧셈기를 제안하였다. 각 덧셈기의 특징을 살펴보면, TYPE 1 덧셈기는 VGS(Variable Group Select) 방식을 사용하여 덧셈기의 속도를 향상시켰으며 TYPE 2 덧셈기는 64비트 GCG(Group Change bit Generator)회로와 8비트 TYPE 1 덧셈기를 사용하여 속도를 향상시켰다. 64비트 TYPE 1 덧셈기의 경우 CLA와 CSA에 비해 각각 23.5%, 29.7%의 속도 향상을 TYPE 2 덧셈기의 경우 각각 41.2%, 45.9%의 속도 향상을 기대할 수 있다. 레이아웃된 24비트 TYPE 1과 TYPE 2 덧셈기의 전달지연 시간은 각각 1.4ns와 1.2ns로 나왔다. 제안한 덧셈기는 매우 규칙적인 구조를 가지고 있기 때문에 빠른 시간에 회로 설계 및 레이아웃이 가능하며 마이크로프로세서나 DSP 등과 같이 고속연산을 필요로 하는 경우에 적합하다.

In this paper a new architecture of 24-bit two's complement adder is designed by using RB(Redundant Binary) arithmetic which has the advantage of CPF(Carry-Propagation-Free). A MPPL(Modified PPL) XOR/XNOR gate is applied to improve a TC2RB(Two's Complement to RB SUM converter) speed and to reduce the number of transistors, and we proposed two types adder which used a fast RB2TC(RB SUM to Two's Complement converter). The property of two types adder is followings. The improvement of TYPE 1 adder speed is archived through the use of VGS(Variable Group Select) method and TYPE 2 adder is through the use of a 64-bit GCG(Group Change bit Generator) circuit and a 8-bit TYPE 1 adder. For 64-bit, TYPE 1 adder can be expected speed improvement of 23.5%, 25.7% comparing with the CLA and CSA, and TYPE 2 adder can be expected 41.2%, 45.9% respectively. The propagation delay of designed 24-bit TYPE 1 adder is 1.4ns and TYPE 2 adder is 1.2ns. The implementation is highly regular with repeated modules and is very well suited for microprocessor systems and fast DSP units.

키워드

참고문헌

  1. H.R.Srinivas and K.K.Parhi, 'A Fast VLSI Adder Architecture', IEEE Jour. Solid-State Circuits, Vol. 27, No.5, pp. 761-767, May 1992 https://doi.org/10.1109/4.133165
  2. N.E. Weste and K. Eshraghian, 'principles of CMOS VLSI design : A systems perspective', Addison-Wesley, NY, 1993
  3. J.M. Dobson and G.M. Blair, 'Fast two's complement VLSI adder .design', Electronics Letters, Vol. 31, No. 20, pp. 773-783, 28th Sept. 1995
  4. A. Vandemeulebroecke, E. Vanzieleghem. T. Denayer, and P.G. Jespers, 'A new carry-free division algorithm and its application to a single-chip 1024-b RSA processor', IEEE Jour. of Solid-state Circuits, Vol. 25, No.3, pp. 748-756, June 1990 https://doi.org/10.1109/4.102670
  5. H. Makino et al. 'An 8.8-ns 54 ${\times}$ 54-bit multiplier with high speed redundant binary architecture', IEEE Jour. of Solid-State Circuits, Vol. 31, No. 6, pp. 773-783, June, 1996 https://doi.org/10.1109/4.509863
  6. R.P. Brent and H. T. Kung, 'A regular layout for parallel adders', IEEE Trans. Comput., vol. C-31, no. 3, pp. 260-264, Mar, 1982
  7. M. Uya, K. Kaneko, and J. Yasui, 'A CMOS floating point multiplier', IEEE J. Solid-State Circuits, vol. SC-19, no. 5, pp. 697-702, Oct. 1984
  8. A. Bellaouar and H. Touzene, '3.3-V BiCMOS current mode logic circuits for high speed adders', IEEE Jour. of Solid-State Circuits, vol. 31, pp. 1165-1169, 1996 https://doi.org/10.1109/4.508264
  9. P.K.Chan, M.D.F.Schlag, C.D, and V.G. Oklobdzija, 'Delay optimization of carry-skip adders and block-carry-lookahead adders using multidimensional dynamic programming'. IEEE Transactions on Computers, vol 41, pp. 920-930, 1992 https://doi.org/10.1109/12.156534
  10. C.-I.H.Chen and A.Kumar, 'Comments on Area-time optimal adder design', IEEE Transactions on Computers, von 43, pp. 507-512, 1994 https://doi.org/10.1109/12.278491
  11. W.Heimsch et al. 'Merged CMOS/bipolar current switch logic (MCSL)', IEEE Jour. of Solid-State Circuits, vol 24, pp. 13007-1311, 1989 https://doi.org/10.1109/JSSC.1989.572603
  12. I.S.Hwang and A.L.Fisher, 'Ultrafast compact 32-bit CMOS adders in multiple-output domino logic', IEEE Jour. of Solid-State Circuits, vol. 24, pp. 358-369, 1989 https://doi.org/10.1109/4.18596
  13. K.J.Janik and S.-L.Lu, 'VLSI implementation of a 32-bit Kozen formulation Ladner-Fischer parallel prefix adder', proceedings of the IEEE ASIC Conference, pp. 57-59, 1995 https://doi.org/10.1109/ASIC.1995.580681
  14. J.B.Kuo, H.J.Liao and H.P.Chen, 'A BiCMOS dynamic Manchester carry look ahead circuit for VLSI implementation of high speed arithmetic unit' Proceedings of the Custom Integrated Circuits Conference(IEEE), paper 25.4., 1992
  15. M.Suziki et al., 'A 1.5ns 32-b CMOS ALU in double pass-transistor logic', IEEE Jour. of Solid-State Circuits, vol. 28, pp. 1145-1151, 1993 https://doi.org/10.1109/4.245595
  16. A. Tyagi, 'A reduced-area scheme for carry-select adders', IEEE Transactions on Computers, vol. 42, pp. 1163-1170, 1993 https://doi.org/10.1109/12.257703
  17. J. Wang et al., 'Area-time analysis of carry look ahead adders using enhanced multiple output domino logic', Proceedings of the International Symposium on Circuits and Systems(IEEE), vol. 4(VLSI), pp. 59-62, 1994 https://doi.org/10.1109/ISCAS.1994.409196