• Title/Summary/Keyword: Reductive

Search Result 472, Processing Time 0.022 seconds

Sulfuric Acid Dissolution of Carriers for Recovering Platinum from the Spent Petroleum Catalysts (석유 폐촉매로부터 백금 회수를 위한 담체의 황산용해)

  • Lee Jae-chun;Jeong Jinki;Kim Byung-su;Kim Min Seuk;Cho Young Soo
    • Resources Recycling
    • /
    • v.13 no.1
    • /
    • pp.14-21
    • /
    • 2004
  • Spent catalysts containing platinum were generated in petroleum refinery and other chemical industries. The reclamation of platinum metals from such wastes has long been attempted in view of their rare, expensive and indispensable nature. In this study, the recovery of platinum from petroleum catalysts was attempted by a method consisting mainly of dissolving alumina carrier with sulfuric acid thereby concentrating insoluble platinum. Also, platinum dissolved partially in sulfuric acid was recovered by a cementation method using aluminum metal as a reductive agent. The effect of temperature, time, concentration of sulfuric acid, and pulp density on the dissolution of carrier was investigated. When the carrier of platinum catalyst was $\Upsilon-Al_2$O$_3$ about 95% alumina was dissolved in 6.0 M sulfuric acid at $100^{\circ}C$ for 2 hours. When the carrier was the mixture of $\Upsilon-Al_2$$O_3$ and $\alpha$-$Al_2$$O_3$ about 92% was dissolved after 4 hours. As a result, more than 99% of platinum could be recovered by this method and aluminum sulfate was also obtained as byproduct.

Preliminary Study on Arsenic Speciation Changes Induced by Biodegradation of Organic Pollutants in the Soil Contaminated with Mixed Wastes (유기물분해에 따른 유류${\cdot}$중금속 복합오염토양내 비소화학종 변화의 기초연구)

  • 이상훈;천찬란;심지애
    • Economic and Environmental Geology
    • /
    • v.36 no.5
    • /
    • pp.349-356
    • /
    • 2003
  • As industrial activities are growing, pollutants found in the contaminated land are getting diverse. Some contaminated areas are subject to mixed wastes containing both organic and inorganic wastes such as hydrocarbon and heavy metals. This study concerns with the influence of the degradation of organic pollutants on the coexisting heavy metals, expecially for As. As mainly exists as two different oxidation state; As(III) and As(V) and the conversion between the two chemical forms may be induced by organic degradation in the soil contaminated by mixed wastes. We operated microcosm in an anaerobic chamber for 60 days, using sandy loam. The soils in the microcosm are artificially contaminated both by tetradecane and As, with different combination of As(III) and As(V); As(III):As(V) 1:1, As(III) only and As(V) only. Although not systematic, ratio of As(III)/As(Total) increase slightly at the later stage of experiment. Considering complicated geochemical reactions involving oxidation/reduction of organic materials, Mn/Fe oxides and As, the findings in the study seem to indicate the degradation of the organics is connected with the As speciation. That is to say, the As(V) can be reduced to As(III) either by direct or indirect influence induced by the organic degradation. Although Fe and Mn are good oxidising agent for the oxidation of As(III) to As(V), organic degradation may have suppressed reductive dissolution of the Fe and Mn oxides, causing the organic pollutants to retard the oxidation of As(III) to As(V) until the organic degradation ceases. The possible influence of organic degradation on the As speciation implies that the As in mixed wastes may be have elevated toxicity and mobility by partial conversion from As(V) to As(III).

Change of Chemical Properties and Nutrient Dynamic in Pore Water of Upland Soil During Flooding (담수에 의한 밭 토양 공극수의 화학적 특성 및 영양분 농도 변화)

  • Kim, Jae-Gon;Chon, Chul-Min;Lee, Jin-Soo
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.327-334
    • /
    • 2008
  • Understanding the chemical characteristics of sediments and the nutrient diffusion from sediments to the water body is important in the management of surface water quality. Changes in chemical properties and nutrient concentration of a submerged soil were monitored for 6 months using a microcosm with the thickness of 30cm for upland soil and 15cm of water thickness above the soil. The soil color changed from yellowish red to grey and an oxygenated layer was formed on the soil surface after 5 week flooding. The redox potential and the pH of the pore water in the microcosm decreased during the flooding. The nitrate concentration of the surface water was continuously increased up to $8\;mg\;l^{-1}$ but its phosphate concentration decreased from $2\;mg\;l^{-1}$ to $0.1\;mg\;l^{-1}$ during flooding. However, the concentrations of $NH_4^+$, $PO_4^{3-}$, Fe and Mn in the pore water were increased by the flooding during this period. The increased $NO_3^-$ in the surface water was due to the migration of $NH_4^+$ formed in the soil column and the oxidation to $NO_3^-$ in the surface water. The increased phosphate concentration in the pore water was due to the reductive dissolution of Fe-oxide and Mn-oxide, which scavenged phosphate from the soil solution. The oxygenated layer played a role blocking the migration of phosphate from the pore water to the water body.

Degradation of Chlorothalonil by Zerovalent Iron-Montmorillonite Complex (Zerovalent iron-montmorillonite 복합체에 의한 chlorothalonil의 분해)

  • Choi, Choong-Lyeal;Park, Man;Lee, Dong-Hoon;Rhee, In-Koo;Song, Kyung-Sik;Kang, Sang-Jae;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.257-261
    • /
    • 2006
  • Zerovalent iron (ZVI) has been recently used for environmental remediation of soils and groundwaters contaminated by chlorinated organic compounds. As a new approach to improve its reductive activity and stability, zerovalent iron-montmorillonites (ZVI-Mt) complex are synthesized by simple process. Therefore, this study was carried out to elucidate the characteristics of ZVI-Mt complex and to investigate degradation effects of fungicide chlorothalonil. The XRD patterns of ZVI-Mt complex showed distinctive peaks of ZVI and montmorillonite. In ZVI-Mt complex, the oval particles of ZVI were partly surrounded by montmorillonite layers that could prevent ZVI surface oxidation by air. The degradation ratio of chlorothalonil after 60 min exhibited 71% by ZVI and 100% by ZVI-Mt complex. ZVI-Mt21 complex exhibited much higher and faster degradation ratio of chlorothalonil compare to that of ZVI or ZVI-Mt11 complex. Also, degradation rate of chlorothalonil was increased with increasing ZVI or ZVI-Mt complex content and with decreasing initial solution pH.

An Experimental Study on the Restoration Creation of Tidal Flats (간석지 생태계 복원에 관한 실험적 연구)

  • Lee, Jeoung-gyu;Lee, Nam-hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.1
    • /
    • pp.77-82
    • /
    • 2000
  • Seven constructed and three natural tidal flats were compared to evaluate state-of- the-art of creation and restoration technology for tidal flats. parameters studied were physico-chemical and biological characteristics of soils and rate of respiration. The natural tidal flats had higher contents of silts, nitrogen and organic matter compared to the constructed ones. The natural ones had reductive Bone below 2 cm whereas the constructed ones had oxidative zone from the surface to below 20 cm. The bacterial population in the soil of the constructed tidal flats was one to two magnitudes lower than that in the natural ones. Biomass of macrobenthos and microbial respiration rate, however, were not different significantly between the natural and the constructed tidal flats. The purification capacity by diatom+bacterial+meiobenthos and macrobenthos in the constructed tidal flats was higher than that in the natural ones due to deeper permeable layer for purification in the constructed tidal flats. There was an exceptional constructed tidal flat with similar physico-chemical and biological characteristics to natural ones. Shearing stress to the surface of the tidal flat by the flow of seawater was as low as that of natural ones. These hydraulic conditions seemed to be a controlling factor on structures and functions of tidal flats. The control of hydraulic condition seemed to be one of the most important factors to create natural-like tidal flats.

  • PDF

Green in Film Color: Life and Matter (영화의 초록, 생명과 물질)

  • Kim, Jong-Guk
    • Cartoon and Animation Studies
    • /
    • s.49
    • /
    • pp.399-423
    • /
    • 2017
  • When thinking about the essence of color, green is the image that is settled on the plant itself, and it is also the color shining by the sun. Physics tries to explain green of plants in the correlation of sun and moon, and the history of art contemplates how it is expressed on the canvas. The film attempts to represent a realistic green using camera or computer specific to the medium. Many color theorists who explore the essence of color do not trust the mechanical and reductive scientific colorism that began in Newton and seek a completely different way of exploring in psychology and aesthetics. Like Goethe, who opposed Newton, they do not distinguish the human as subject and the color as object, but focus on the internal grounds of the relationship between subject and color. The representation of color in film is a combination of physics and art. Film color can be expanded to the spiritual dimension beyond the previous emotional and aesthetic, even beyond the physical and mental domains.

Effect of Overexpressed Ref-1 on AKT Phosphorylation for NO Production in Mouse Aortic Endothelial Cell Line (마우스 내피세포주 MAE의 NO 생성과정에서 과발현된 Ref-1의 AKT 활성 조절에 대한 연구)

  • Song, Ju-Dong;Lee, Sang-Kwon;Park, Young-Chul
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1651-1656
    • /
    • 2008
  • Redox factor-1 (Ref-1) is essential for repair of oxidatively damaged DNA and also govern the reductive activation of many transcription factors. In this study, we examined the effect of overexpressed Ref-1 on AKT activation for nitric oxide (NO) production in mouse aortic endothelial (MAE) cells. Adenoviral-mediated overexpression of Ref-1 enhanced NO production in unstimulated- as well as bradykinin-stimulated MAE cells. Importantly, forced overexpression of Ref-1 induced direct phosphorylation of AKT in cells. And, a PI3K inhibitor wortmannin completely abolished the increase in AKT phosphorylation by stimulation of bradykinin and/or overexpressed Ref-1. In addition, inhibition of AKT activity with HA-tagged activation-deficient AKT suppressed Ref-1-induced endothelial NO synthase (eNOS) phosphorylation and resulted in a corresponding inhibition of unstimulated- and bradykinin-stimulated NO production. These results suggest that Ref-1 stimulates direct phosphorylation of AKT for eNOS enzyme activity in murine endothelial cells.

Antioxidant Activity of Rhus verniciflua Stokes Extract in Model Systems and Cooked Beef (모델시스템과 가열우육에서 옻나무 추출물의 항산화 효과)

  • Liang Cheng Yun;Kang Sun Moon;Kim Yong Sun;Lee Sung Ki
    • Food Science of Animal Resources
    • /
    • v.25 no.2
    • /
    • pp.189-195
    • /
    • 2005
  • This study was carried out to investigate the antioxidant effect of Rhus verniciflua Stokes (RVS) extracts. The antioxidant activity of ethanol and water extract from RVS was examined on model systems and cooked beef, respectively. As concentration of RVS ethanol extract increased (1, 10, 100, and 1,000 ppm), the reductive activity of DPPH (2, 2-diphenyl-1-picrylhydrazyl) was significantly increased (14.79, 75.08, 82.02, and $83.97\%$ respectively) (p<0.05). The RVS ethanol extract (10 ppm) was showed higher antioxidant activity than control in liposome and meat homogenate (p<0.05). It had more antioxidative effect in 10 ppm RVS ethanol extract with 2 ppm $\alpha-tocopherol$ treatment The maximum antioxidant activity appeared at pH 6.0 in meat homogenate and at pH $5.0\~6.0$ in liposome. Cooked beef mixed with Rhus verniciflua Stokes water extract showed significantly lower TBARS value, POV during storage for 4 days at $4^{\circ}C$ (p<0.05). And the RVS water extract also showed strong antioxidant activity in cooked beef which accelerated NaCl-catalyzed oxidation. Therefore, the results suggest that RVS extract may be used in commercial meat products as natural antioxidant in the near future.

Effect of Nitrate on Iron Reduction and Phosphorus Release in Flooded Paddy Soil (논토양에서 질산 이온이 철의 환원과 인의 용출에 미치는 영향)

  • Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.165-170
    • /
    • 2009
  • The increase in P availability to rice under flooded soil conditions involves the reductive dissolution of iron phosphate and iron (hydr)oxide phosphate. However, since $NO_3^-$ is a more favourable electron acceptor in anaerobic soils than Fe, high$NO_3^-$ loads function as a redox buffer limiting the reduction of Fe. The effect of adding $NO_3^-$ on Fe reduction and P release in paddy soil was investigated. Pot experiment was conducted where $NO_3^-$ was added to flooded soil and changes of redox potential and $Fe_2^+$, $NO_3^-$ and $PO_4^{3-}$ concentrations in soil solution at 10 cm depth were monitored as a function of time. Redox potential decreased with time to -96 mV, but it was temporarily poised at about 330${\sim}$360 mV when $NO_3^-$ was present. Nitrate addition to soil led to reduced release of $Fe_2^+$ and prevented the solubilization of P. Phosphate in pore water began to rise soon after incubation and reached final concentrations about 0.82 mg P/L in the soil without $NO_3^-$ addition. But, in the soil with $NO_3^-$ addition, $PO_4^{3-}$ in pore water was maintained in the range of 0.2${\sim}$0.3 mg P/L. The duration of inhibition in $Fe_2^+$ release was closely related to the presence of $NO_3^-$, and the timing of $PO_4^{3-}$ release was inversely related to the $NO_3^-$ concentration in soil solution. The results suggest that preferential use of $NO_3^-$ as an electron acceptor in anaerobic soil condition can strongly limit Fe reduction and P solubilization.

Reactions of Iridium(Ⅰ) Complexes with Acrylonitrile and Polymerization of Acrylonitrile with Iridium(Ⅰ)-Acrylonitrile Complex (이리듐(Ⅰ) 착물과 아크릴로니트릴의 반응 및 이리듐(Ⅰ)-아크릴로니트릴 착물에 의한 아크릴로니트릴의 중합반응)

  • Sang Ha Kim;Chong Sik Chin
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.340-344
    • /
    • 1983
  • It has been found that both of the iridium (Ⅰ) complexes, Ir$(ClO_4$)(AN)(CO)$(Ph_3P)_2$(AN = $CH_2$CHCN, $Ph_3P = (C_6H_5)_3$P) and [Ir(AN)(CO)$(Ph_3P)_2]ClO_4$, react with $Cl^-$ to give IrCl(AN)(CO)$(Ph_3P)_2$, and [Ir(AN)(CO)$(Ph_3P)_2]ClO_4$ dissociates AN to yield Ir$(ClO_4)(CO)(Ph_3P)_2$ in the absence of excess AN added, and Ir$(ClO_4)(CO)(Ph_3P)_2$ reacts with $Cl^-$ to produce IrCl(CO)$(Ph_3P)_2$. It is suggested that the catalytic polymerization of AN with Ir$(ClO_4)(AN)(CO)(Ph_3P)_2$ proceeds through the formation of [(CO)(Ph_3P)_2$Ir(-CH=CHCN)(H)($CH_2$=CHCN)]Cl$O_4$ followed by the formation of iridium(alkyl)(alkenyl) type complex which undergoes a reductive elimination to produce the polymer of acrylonitrile.

  • PDF