Browse > Article
http://dx.doi.org/10.5338/KJEA.2006.25.3.257

Degradation of Chlorothalonil by Zerovalent Iron-Montmorillonite Complex  

Choi, Choong-Lyeal (Department of Agricultural Chemistry, Kyungpook National University)
Park, Man (Department of Agricultural Chemistry, Kyungpook National University)
Lee, Dong-Hoon (Department of Agricultural Chemistry, Kyungpook National University)
Rhee, In-Koo (Department of Agricultural Chemistry, Kyungpook National University)
Song, Kyung-Sik (Department of Agricultural Chemistry, Kyungpook National University)
Kang, Sang-Jae (Department of Environmental Horticulture, Sangju National University)
Kim, Jang-Eok (Department of Agricultural Chemistry, Kyungpook National University)
Publication Information
Korean Journal of Environmental Agriculture / v.25, no.3, 2006 , pp. 257-261 More about this Journal
Abstract
Zerovalent iron (ZVI) has been recently used for environmental remediation of soils and groundwaters contaminated by chlorinated organic compounds. As a new approach to improve its reductive activity and stability, zerovalent iron-montmorillonites (ZVI-Mt) complex are synthesized by simple process. Therefore, this study was carried out to elucidate the characteristics of ZVI-Mt complex and to investigate degradation effects of fungicide chlorothalonil. The XRD patterns of ZVI-Mt complex showed distinctive peaks of ZVI and montmorillonite. In ZVI-Mt complex, the oval particles of ZVI were partly surrounded by montmorillonite layers that could prevent ZVI surface oxidation by air. The degradation ratio of chlorothalonil after 60 min exhibited 71% by ZVI and 100% by ZVI-Mt complex. ZVI-Mt21 complex exhibited much higher and faster degradation ratio of chlorothalonil compare to that of ZVI or ZVI-Mt11 complex. Also, degradation rate of chlorothalonil was increased with increasing ZVI or ZVI-Mt complex content and with decreasing initial solution pH.
Keywords
Zerovalent iron; montmorillonite; chlorothalonil; oxidation; remediation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yang, G. C. C. and Lee, H. L. (2005) Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water Res. 39, 884-894   DOI   ScienceOn
2 Joo, S. H., Feitz, A. J. and Waite, D. (2004) Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron, Environ. Sci. Tech. 38, 2242-2247   DOI   ScienceOn
3 Agrawal, A. and Reatnyek, P. G. (1996) Reduction of nitro aromatic compounds by zerovalent iron metal. Environ. Sci. Technol. 30, 153-160   DOI   ScienceOn
4 Kim, D. H. (2005) Enhanced degradation of the organophosphorus insecticide chlorpyrifos by synthesized zerovalent iron. M. S. Thesis, Kyungpook National University
5 Ghauch, A. (2001) Degradation of benomyl, picloram and dicamba in a conical apparatus by zero-valent iron powder. Chemosphere, 43, 1109-1117   DOI   ScienceOn
6 Lein, H. L. and Jhang, W. (1999) Transformation of chlorinated methanes by nanoscale iron particle. J. Environ. Eng. 125, 1042-1047   DOI
7 Alowitz, M. J. and Scherer, M. M. (2002) Kinetics of nitrate, nitrite and Cr(VI) reduction by iron metal. Environ. Sci. Technol. 36, 299-306   DOI   ScienceOn
8 Shea, P. J., Machacek, T. A., Comfort S. D. (2004) Accelerated remediation of pesticide-contaminated soil with zerovalent iron. Environmental Pollution, 132, 183-188   DOI   ScienceOn
9 Agrawal, A., Ferguson, W. J., Gardner, B. O., Christ, J. A., Bandstra, J. Z. and Trantnyek, P. G. (2002) Effects of carbonate species on the kinetics of dechlorination of 1,1,1-trichloroethane by zero-valent iron. Environ. Sci. Tech. 36, 4326-4333   DOI   ScienceOn
10 Zhang, W. X. (2003) Nano scale iron particles for environmental remediation: an overview. J. Nanopart. Res. 5, 323-332   DOI   ScienceOn
11 Wang, C. B. and Zhang, W. X. (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Tech. 31, 2154-2156   DOI   ScienceOn
12 Kanel, S. R., Manning, B., Charlet L. and Lee, H. (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Tech. 39, 1291-1298   DOI   ScienceOn
13 Park, M., Kim, C. Y., Lee, D. H., Choi, C. L., Choi, J., Lee, S. R. and Choi, J. H. (2004) Intercalation of magnesium-urea complex into swelling clay. J. Physics & Chem. Solid, 65, 409-412   DOI   ScienceOn
14 Yao, Y. D., Chen, Y. Y., Lee, S. F., Chang, W. C. and Hu, H. L. (2002) Magnetic and thermal studies of nano-size Co and Fe particles. J. Magn. Magn. Mater. 239, 249-251   DOI   ScienceOn
15 Joo, S. H., Feitz, A. J., Sedlak, D. L. and Waite, T. D. (2005) Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environ. Sci. Tech. 39, 1263-1268   DOI   ScienceOn
16 Dror, I., Baram, D. and Berkowitz, B. (2005) Use of nanosized catalysts transformation of chloro-organic pollutants, Environ. Sci. Tech. 39, 1283-1290   DOI   ScienceOn
17 He, C., Makovicky, E. and Osback, B. (1996) Thermal treatment and pozzolanic activity of Na- and Ca-montmorillonite. Applied Clay Sci. 10, 351-368   DOI   ScienceOn
18 Matheson, L. J. and Tratnyek, P. G. (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Tech. 28, 2045-2053   DOI   ScienceOn
19 Kober, R., Schlicker, O., Ebert, M. and Dahmke, A. (2002) Degradation of chlorinated ethylenes by $Fe^{0}$: inhibition processes and mineral precipitation. Environ. Geol. 41, 644-652   DOI