Browse > Article
http://dx.doi.org/10.5352/JLS.2008.18.12.1651

Effect of Overexpressed Ref-1 on AKT Phosphorylation for NO Production in Mouse Aortic Endothelial Cell Line  

Song, Ju-Dong (Department of Cardiovascular Surgery, Pusan National University School of Medicine)
Lee, Sang-Kwon (Department of Microbiology & Immunology, Pusan National University School of Medicine)
Park, Young-Chul (Department of Cardiovascular Surgery, Pusan National University School of Medicine)
Publication Information
Journal of Life Science / v.18, no.12, 2008 , pp. 1651-1656 More about this Journal
Abstract
Redox factor-1 (Ref-1) is essential for repair of oxidatively damaged DNA and also govern the reductive activation of many transcription factors. In this study, we examined the effect of overexpressed Ref-1 on AKT activation for nitric oxide (NO) production in mouse aortic endothelial (MAE) cells. Adenoviral-mediated overexpression of Ref-1 enhanced NO production in unstimulated- as well as bradykinin-stimulated MAE cells. Importantly, forced overexpression of Ref-1 induced direct phosphorylation of AKT in cells. And, a PI3K inhibitor wortmannin completely abolished the increase in AKT phosphorylation by stimulation of bradykinin and/or overexpressed Ref-1. In addition, inhibition of AKT activity with HA-tagged activation-deficient AKT suppressed Ref-1-induced endothelial NO synthase (eNOS) phosphorylation and resulted in a corresponding inhibition of unstimulated- and bradykinin-stimulated NO production. These results suggest that Ref-1 stimulates direct phosphorylation of AKT for eNOS enzyme activity in murine endothelial cells.
Keywords
Redox factor-1; mouse aortic endothelial; endothelial NO synthase; adenoviral vector; AKT;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Nakamura, H, K. Nakamura and J. Yodoi. 1997. Redox regulation of cellular activation. Annu. Rev. Immunol. 15, 351-369   DOI   ScienceOn
2 Huang, L. E., Z. Arany, D. M. Livingston and H. F. Bunn. 1996. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J. BioI. Chem. 271, 32253-32259   DOI   ScienceOn
3 Jayaraman, L., K G. Murthy, C. Zhu, T. Curran, S. Xanthoudakis and C. Prives. 1997. Identification of redox/repair protein Ref-1 as a potent activator of p53. Genes Dev. 11, 558-570   DOI   ScienceOn
4 Ayajiki, K, M. Kindermann, M. Hecker, I. Fleming and R. Busse. 1996. Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells. Circ. Res. 78, 750-758   DOI   ScienceOn
5 Jeon, B. H., G. Gupta, Y. C. Park, B. Qi, A. Haile, F. A. Khanday, Y. X. Liu, J. M. Kim, M. Ozaki, A. R White, D. E. Berkowitz and K Irani. 2004. Apurinic/ apyrimidic endonuclease 1 regulates endothelial NO production and vascular tone. Circ. Res. 95, 902-910   DOI   ScienceOn
6 Xing, Z., Y. Ohkawara, M. Jordana, F. L. Graham and J. Gauldie. 1996. Transfer of granulocyte-macrophage colony-stimulating factor gene to rat lung induces eosinophilia, monocytosis, and fibrotic reactions. J. Clin. Invest. 97, 1102-1110   DOI   ScienceOn
7 Song, J. D., K. M. Kim, S. K. Lee, J. M. Kim and Y. C. Park. 2007. Adenoviral mediated Ref-1 overexpression potentiates NO production in bradykinin-stimulated endothelial cells. J. Life Sci. 17, 905-909   과학기술학회마을   DOI   ScienceOn
8 Demple, B., T. Herman and D. S. Chen. 1991. Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: definition of a family of DNA repair enzymes. Proc. Natl. A cad. Sci. USA 88, 11450-11454   DOI   ScienceOn
9 Mitomo, K, K. Nakayama, K. Fujimoto, X. Sun, S. Seki and K. Yamamoto. 1994. Two different cellular redox systems regulate the DNA-binding activity of the p50 subunit of NF-kappa B in vitro. Gene 145, 197-203   DOI   ScienceOn
10 Furchgott, R. F. and J. V. Zawadzki. 1980. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373-376   DOI   ScienceOn
11 Dugid, J. R., J. N. Eble, T. M. Wilson and M. R. Kelley. 1995. Differential cellular and subcellular expression of the human multifunctional apurinic/ apyrimidinic endonuclease (APE/ref-1) DNA repair enzyme. Cancer Res. 55, 6097-6102
12 Dimmeler, S., I. Fleming, B. Fisslthaler, C. Hermann, R. Busse and A. M. Zeiher. 1999. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399, 601-605   DOI   ScienceOn
13 Fulton, D., J. P. Gratton, T. J. McCabe, J. Fontana, Y. Fujio, K Walsh, T. F. Franke, A. Papapetropoulos and W. C. Sessa. 1999. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399, 597-601   DOI   ScienceOn
14 Bult, H. 1996. Nitric oxide and atherosclerosis: possible implications for therapy. Mol. Med. Today 2, 510-518   DOI   ScienceOn
15 Alheid, U., J. C. Frolich and U. Forstermann. 1987. Endothelium-derived relaxing factor from cultured human endothelial cells inhibits aggregation of human platelets. Thromb. Res. 47, 561-571   DOI   ScienceOn
16 Westendorp, R. G., R Draijer, A. E. Meinders and V. W. van Hinsbergh. 1994. Cyclic-GMP-mediated decrease in permeability of human umbilical and pulmonary artery endothelial cell monolayers. J. Vasco Res. 31, 42-51   DOI
17 Busse, R. and A. Mulsch. 1990. Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS Lett. 265, 133-136   DOI   ScienceOn
18 Kawashima, S. and M. Yokoyama. 2004. Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler. Thromb. Vasco BioI. 24, 998-1005   DOI   ScienceOn
19 Cooke, J. P. and V. J. Dzau. 1997. Nitric oxide synthase: role in the genesis of vascular disease. Annu. Rev. Med. 48, 489-509   DOI   ScienceOn
20 Dimmeler, S., B. Assmus, C. Hermann, J. Haendeler and A. M. Zeiher. 1998. Fluid shear stress stimulates phosphorylation of Akt in human endothelial cells: involvement in suppression of apoptosis. Circ. Res. 83, 334-342   DOI   ScienceOn
21 Kuchan, M. J. and J. A. Frangos. 1994. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am. J. Physiol. 266, C628-C636   DOI
22 Martinet, W., M. W. Knaapen, G. R. De Meyer, A. G. Herman and M. M. Kockx. 2002. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation 106, 927-932   DOI   ScienceOn
23 Dai, J., W. Li, L. Chang, Z. Zhang, C. Tang, N. Wang, Y. Zhu and X. Wang. 2006. Role of redox factor-1 in hyperhomocysteinemia-accelerated atherosclerosis. Free Radic. BioI. Med. 41, 1566-1577   DOI   ScienceOn
24 Kojima, H., H. Kojima, K. Sakurai, K. Kikuchi, S. Kawahara, Y. Kirino, H. Nagoshi, Y. Hirata and T. Nagano. 1998. Development of a fluorescent indicator for nitric oxide based on the fluorescein chromophore. Chem. Pharm. Bull. 46, 373-375   DOI   ScienceOn
25 Kakolyris, S., L. Kaklamanis, K. Engels, S. B. Fox, M. Taylor, I. D. Hickson, K. C. Gatter and A. L. Harris. 1998. Expression and subcellular localization of human AP endo-nuclease 1 (HAP1/Ref-1) protein: a basis for its role in human disease. Histopathology 33, 561-569   DOI   ScienceOn
26 Rivkees, S. A. and M. R. Kelley. 1994. Expression of multifunctional DNA repair enzyme gene, apurinic/ apyrimidic endonuclease (APE; Ref-1)in the suprachiasmatic, supraoptic and paraventricular nuclei. Brain Res. 666, 137-142   DOI   ScienceOn