• Title/Summary/Keyword: Reduction process

Search Result 6,043, Processing Time 0.047 seconds

Improvement of Water Quality Using Ultra Filtration System in Artificial Seed Production of Olive Flounder, Paralichthys olivaceus (넙치 인공종묘생산에 있어 막분리 여과 시스템을 이용한 수질환경의 개선)

  • Jung Gwan Sik;Ann Chang Bum;Oh Myung Joo;Ji Seung Cheol;Yoo Jin Hyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.6
    • /
    • pp.639-643
    • /
    • 2002
  • Water quality, bacterial phase and fish growth rate were analyzed in the process of artificial seed production of flounder (Paralichtys oliraceus) larvae to investigate the water quality in rearing tank using Ultra Filtration System (UES). Sand Filtration System (SFS) and Ultra Filtration System (Ins) were set up in the experimental group. For the analysis of water quality, pH, salinity, DO, SS, COD, $NH_{4}^{+},\;NO_{2}^{-},\;NO^-,\;DIN$ (dissolved inorganic nitrogen) and DU (dissolved inorganic phosphate) were measured. There was no data difference between SFS group and UES group in most analysis items, but the UEs group showed low salinity and low 55 values, such that salinity was $33.5\%_{\circ}$ in SES group and $30.2\%_{\circ}$ in WS group and 55 was 15.5 mL/L in SES group and 7.0 mL/L for UPS group. For changes in bacterial phase and TBC (Total Bacterial Counts), in SES group, 6$\times$10^{5}CFU/mL in seawater decreased to the ratio of about 116, and TBC, Genus Vibrio and bacteria in the Genus Acinetobacter and Genus Micrococcus sharply increased after nine days, while stable bacterial phase was maintained low in UES group during the experiment except for Genus Ajteromonas. In the growth of the larvae, fish length was 17.0 mm (SGR 14.0) in the SES group and 18.8 mm (SGR 14.3) in the UFS group. It is concluded that when water is supplied for artificial seed production with WS, stabilization of water quality condition and inhibition of bacterial multiplication are possible. When production environment becomes stable, stable growth of fish becomes possible by reduction of environmental stress.

Eco-friendly and efficient in situ restoration of the constructed sea stream by bioaugmentation of a microbial consortium (복합미생물 생물증강법을 이용한 인공해수하천의 친환경 효율적 현장 수질정화)

  • Yoo, Jangyeon;Kim, In-Soo;Kim, Soo-Hyeon;Ekpeghere, Kalu I.;Chang, Jae-Soo;Park, Young-In;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.83-96
    • /
    • 2017
  • A constructed sea stream in Yeongdo, Busan, Republic of Korea is mostly static due to the lifted stream bed and tidal characters, and receives domestic wastewater nearby, causing a consistent odor production and water quality degradation. Bioaugmentation of a microbial consortium was proposed as an effective and economical restoration technology to restore the polluted stream. The microbial consortium activated on site was augmented on a periodic basis (7~10 days) into the most polluted site (Site 2) which was chosen considering the pollution level and tidal movement. Physicochemical parameters of water qualities were monitored including pH, temperature, DO, ORP, SS, COD, T-N, and T-P. COD and microbial community analyses of the sediments were also performed. A significant reduction in SS, COD, T-N, and COD (sediment) at Site 2 occurred showing their removal rates 51%, 58% and 27% and 35%, respectively, in 13 months while T-P increased by 47%. In most of the test sites, population densities of sulfate reducing bacterial (SRB) groups (Desulfobacteraceae_uc_s, Desulfobacterales_uc_s, Desulfuromonadaceae_uc_s, Desulfuromonas_g1_uc, and Desulfobacter postgatei) and Anaerolinaeles was observed to generally decrease after the bioaugmentation while those of Gamma-proteobacteria (NOR5-6B_s and NOR5-6A_s), Bacteroidales_uc_s, and Flavobacteriales_uc_s appeared to generally increase. Aerobic microbial communities (Flavobacteriaceae_uc_s) were dominant in St. 4 that showed the highest level of DO and least level of COD. These microbial communities could be used as an indicator organism to monitor the restoration process. The alpha diversity indices (OTUs, Chao1, and Shannon) of microbial communities generally decreased after the augmentation. Fast uniFrac analysis of all the samples of different sites and dates showed that there was a similarity in the microbial community structures regardless of samples as the augmentation advanced in comparison with before- and early bioaugmentation event, indicating occurrence of changing of the indigenous microbial community structures. It was concluded that the bioaugmentation could improve the polluted water quality and simultaneously change the microbial community structures via their niche changes. This in situ remediation technology will contribute to an eco-friendly and economically cleaning up of polluted streams of brine water and freshwater.

Geophysical Studies on Major Faults in the Gyeonggi Massif : Gravity and Electrical Surveys In the Gongju Basin (경기육괴내 주요 단층대의 지구물리학적 연구: 공주분지의 중력 및 지전기 탐사)

  • Kwon Byung-Doo;Jung Gyung-Ja;Baag Chang-Eob
    • The Korean Journal of Petroleum Geology
    • /
    • v.2 no.2 s.3
    • /
    • pp.43-50
    • /
    • 1994
  • The geologic structure of Gongju Basin, which is a Cretaceous sedimentary basin located on the boundary of Gyeonggi Massif and Ogcheon Belt, is modeled by using gravity data and interpreted in relation with basin forming tectonism. The electrical survey with dipole-dipole array was also conducted to uncover the development of fractures in the two fault zones which form the boundaries of the basin. In the process of gravity data reduction, the terrain correction was performed by using the conic prism model, which showed better results specially for topography having a steep slope. The gravity model of the geologic structure of Gongju basin is obtained by forward modeling based on the surface geology and density inversion. It reveals that the width of the basin at its central part is about $4{\cal}km$ and about $2.5{\cal}km$ at the southern part. The depth of crystalline basement beneath sedimentary rocks of the basin is about $700{\~}400{\cal}m$ below the sea level and it is thinner in the center than in margin. The fault of the southeastern boundary appears more clearly than that of the northwestern boundary, and its fracture zone may extended to the depth of more than $1{\cal}km$. Therefore, it is thought that the tectonic movement along the fault in the southeastern boundary was much stronger. These results coincide with the appearance of broad low resistivity anomaly at the southeastern boundary of the basin in the resistivity section. The fracture zones having low density are also recognized inside the basin from the gravity model. The swelling feature of basement and the fractures in sedimentary rocks of the basin suggest that the compressional tectonic stress had also involved after the deposition of the Cretaceous sediments.

  • PDF

Investigation of Microbial Contamination in Oenanthe javanica at Postharvest Environments (미나리(Oenanthe javanica) 수확 후 처리 환경에서의 위생지표세균 및 병원성 미생물 오염도 조사)

  • Kim, Yeon Rok;Lee, Kyoung Ah;Choi, In-Wook;Lee, Young-Ha;Kim, Se-Ri;Kim, Won-Il;Ryu, Song Hee;Lee, Hyo Sub;Ryu, Jae-Gee;Kim, Hwang-Yong
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.4
    • /
    • pp.268-277
    • /
    • 2014
  • This study assessed microbiological hazards at postharvest stage of dropwort farms (A, B, C, D, E, F, G, H, I) located in 4 different areas in Korea. The samples were assessed for sanitary indication bacteria (total aerobic bacteria, coliform, and Escherichia coli) and pathogenic bacteria (Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus and Bacillus cereus). Total aerobic bacteria and coliform in 9 dropwort farms were detected at the levels of 0~7.00 and 0~4.25 log CFU/g, mL, of $100cm^2$. In particular, microbial contamination in worker's hand showed higher than cultivation environment factors. Escherichia coli was detected in several farms of soil, irrigation water, washing water and worker's hand and also, dropwort in these farms was contaminated with E. coli (positive reaction). In case of pathogenic bacteria, B. cereus was detected at the highest levels in soil. S. aureus was detected qualitatively from only one sample of dropwort washed by water. E. coli O157:H7 and L. monocytogenes were not detected. Although dropwort pass through 2 process (trimming and washing), the microbial contamination was not differ significantly before and after which indicates that current washing system was not effect on reduction of microorganism. From these results, the postharvest environment and workers have been considered as cross-contamination factors. Thus, processing equipments and personal hygiene should be managed to reduce the microbial contamination of dropwort. Accordingly management system such as good agricultural practices (GAP) criteria is needed for the safety of dropwort

The Effect of Aging Treatment on the High Temperature Fatigue Fracture Behavior of Friction Welded Domestic Heat Resisting Steels (SUH3-SUS 303) (마찰용접된 국산내열 강 (SUH3-SUS303 )의 시효열처리가 고온피로강도 및 파괴거동에 미치는 영향에 관한 연구)

  • Lee, Kyu-Yong;Oh, Sae-Kyoo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.93-103
    • /
    • 1981
  • It is well-known that nowadays heat resisting and anti-corrosive materials have been widely used as the components materials of gas turbines, nuclear power plants and engines etc. In the fields of machine production industry. And materials for engine components, like as the exhaust valve of internal combustion engine, have been required to operate under the high temperature range of $700^{\circ}C$-$800^{\circ}C$ and high pressured gas with repeated mechanical load for the high performance of engines. For these components, friction welding for bonding of dissimilar steels can be applied for in order to obtain process shortening, production cost reduction and excellent bonding quality. And age hardening recently has been noticed to the heat resisting materials for further strengthening of high temperature strength, especially high temperature fatigue strength. However, it is difficult to find out any report concerning the effects of age hardening for strengthening high temperature fatigue strength to the Friction welded heat resisting and anti-corrosive materials. In this study the experiment was carried out as the high temperature rotary bending fatigue testing under the condition of $700^{\circ}C$ high temperature to the friction welded domestic heat resisting steels, SUH3-SUS303, which were 10hr., 100hr. aging heat treated at $700^{\circ}C$ after solution treatment 1hr. at $1, 060^{\circ}C$ for the purpose of observing the effects of the high temperature fatigue strength and fatigue fracture behaviors as well as with various mechanical properties of welded joints. The results obtained are summarized as follows: 1) Through mechanical tests and micro-structural examinations, the determined optimum welding conditions, rotating speed 2420 rpm, heating pressure 8kg/mm super(2), upsetting pressure 22kg/mm super(2), the amount of total upset 7mm (heating time 3 sec and upsetting time 2 sec) were satisfied. 2) The solution treated material SUH 3, SUS 303, have the highest inclination gradient on S-N curve due to the high temperature fatigue testing for long time at $700^{\circ}C$. 3) The optimum aging time of friction welded SUH3-SUS 303, has been recognized near the 10hr. at $700^{\circ}C$ after the solution treatment of 1hr. at $1, 060^{\circ}C$. 4) The high temperature fatigue limits of aging treated materials were compared with those of raw material according to the extender of aging time, on 10hr. aging, fatigue limits were increased by SUH 3 75.4%, SUS 303 28.5%, friction welded joints SUH 3-SUS 303 44.2% and 100hr. aging the rates were 64.9%, 30.4% and 36.6% respectively. 5) The fatigue fractures occurred at the side of the base matal SUS303 of the friction welded joints SUH 3-SUS 303 and it is difficult to find out fractures at the friction welding interfaces. 6) The cracking mode of SUS 303, SUH 3-303 is intergranular in any case, but SUH 3 is fractured by transgranular cracking.

  • PDF

The Development of Vulnerable Elements and Assessment of Vulnerability of Maeul-soop Ecosystem in Korea (한국 마을숲 생태계 취약요소 발굴 및 취약성 평가)

  • Lim, Jeong-Cheol;Ryu, Tae-Bok;Ahn, Kyeong-Hwan;Choi, Byoung-Ki
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.34 no.4
    • /
    • pp.57-65
    • /
    • 2016
  • Maeul-soop(Village forest) is a key element of Korean traditional village landscape historically and culturally. However, a number of Maeul-soops have been lost or declined due to various influences since the modern age. For this Maeul-soop that has a variety of conservation values including historical, cultural and ecological ones, attention and efforts for a systematic conservation and restoration of Maeul-soop are needed. The purpose of the present study is to provide information on ecological restoration and sustainable use and management of Maeul-soops based on component plant species, habitat and location characteristics of 499 Maeul-soops spread throughout Korea. Major six categories of threat factors to Maeul-soop ecosystem were identified and the influence of each factor was evaluated. For the evaluation of weight by threat factors for the influence on the vulnerability of Maeul-soop ecosystem, more three-dimensional analysis was conducted using Analytic Hierarchy Process (AHP) analysis method. In the results of evaluation using AHP analysis method, reduction of area, among six categories, was spotted as the biggest threat to existence of Maeul-soops. Next, changes in topography and soil environment were considered as a threat factor of qualitative changes in Maeul-soop ecosystem. Influence of vegetation structure and its qualitative changes on the loss or decline of Masul-soop was evaluated to be lower than that of changes in habitat. Based on weight of each factor, the figures were converted with 100 points being the highest score and the evaluation of vulnerability of Maeul-soop was conducted with the converted figures. In the result of evaluation of vulnerability of Maeul-soops, grade III showed the highest frequency and a normal distribution was formed from low grade to high grade. 38 Maeul-soops were evaluated as grade I which showed high naturality and 10 Maeul-soops were evaluated as grade V as their maintenance was threatened. Also in the results of evaluation of vulnerability of each Maeul-soop, restoration of Maeul-soop's own area was found as top priority to guarantee the sustainability of Maeul-soops. It was confirmed that there was a need to prepare a national level ecological response strategy for each vulnerability factor of Maeul-soop, which was important national ecological resources.

Electrochemical Propertics and Oxidation Reaction of Hydrazobenzene by Oxygen Adducted Tetradentate Schiff Base Cobalt(II)(3MeOSED) Activated Catalyst in Aprotic Solvents(I) (비수용매에서 산소첨가된 네자리 Schiff Base Cobalt(II)(3MeOSED) 활성촉매에 의한 Hydrazobenzene의 산화반응과 전기화학적 성질 (제 1 보))

  • Ki-Hyung Chjo;Yong-Kook Choi;Sang-Bock Kim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.261-272
    • /
    • 1992
  • Tetradentate Schiff base Cobalt(II)(3MeOSED)$(H_2O)_2$ complexe was synthesized and allowed to react with dry oxygen to form oxygen adducts of Cobalt(III) complexes such as ${\mu}$-peroxo type [Co(III)(3MeOSED)(DMF)]$_2O_2$ and [Co(III)(3MeOSED)(DMSO)]$_2O_2$in DMF and DMSO or superoxo type [Co(III)(3MeOSED)(Py)]$O_2$ in pyridine. The oxygen adducted complex was investigated by cyclic voltammetry and DPP method with glassy carbon electrode in 0.1M TEAP-DMF (-DMSO,-Py) as supporting electrolyte solution. As a result the reduction reaction process occurred to four steps including prewave Of $O_2^-$in 1 : 1 oxygen adducted superoxo type [Co(III)(3MeOSED)(Py)]$O_2$complex and three steps not including prewave of $O_2^-$ in 1 : 2 oxygen adducted ${\mu}$-peroxo type [Co(III)-(3MeOSED)(DMF)]$_2O_2$ and [Co(III)(3MeOSED)(DMSO)]$_2O_2$. A superoxo type [Co(III)(3MeOSED)(L)]$O_2\;(L: CH_3OH)$ was generated with oxygen in methanol. Selectively oxidized hydrazobenzene $(H_2AB)$ to trans-azobenzene(t-AB) and the rate constant k for oxidation reaction of the following equation is $(2.96 {\pm} 0.2)$${\times}$ $10^{-1}$M/sec. $H_2AB$ + Co (II)(3MeOSED)$(L_2)+O_2\;{\rightleftarrow^K}$ [Co(III)(3MeOSED)(L)]$O_2{\cdot}H_2AB{\longrightarrow^K}$ Co(II(3MeOSED)$(L)_2$+t-AB+$H_2O_2 $.

  • PDF

Optimization Process Models of Gas Combined Cycle CHP Using Renewable Energy Hybrid System in Industrial Complex (산업단지 내 CHP Hybrid System 최적화 모델에 관한 연구)

  • Oh, Kwang Min;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.65-79
    • /
    • 2019
  • The study attempted to estimate the optimal facility capacity by combining renewable energy sources that can be connected with gas CHP in industrial complexes. In particular, we reviewed industrial complexes subject to energy use plan from 2013 to 2016. Although the regional designation was excluded, Sejong industrial complex, which has a fuel usage of 38 thousand TOE annually and a high heat density of $92.6Gcal/km^2{\cdot}h$, was selected for research. And we analyzed the optimal operation model of CHP Hybrid System linking fuel cell and photovoltaic power generation using HOMER Pro, a renewable energy hybrid system economic analysis program. In addition, in order to improve the reliability of the research by analyzing not only the heat demand but also the heat demand patterns for the dominant sectors in the thermal energy, the main supply energy source of CHP, the economic benefits were added to compare the relative benefits. As a result, the total indirect heat demand of Sejong industrial complex under construction was 378,282 Gcal per year, of which paper industry accounted for 77.7%, which is 293,754 Gcal per year. For the entire industrial complex indirect heat demand, a single CHP has an optimal capacity of 30,000 kW. In this case, CHP shares 275,707 Gcal and 72.8% of heat production, while peak load boiler PLB shares 103,240 Gcal and 27.2%. In the CHP, fuel cell, and photovoltaic combinations, the optimum capacity is 30,000 kW, 5,000 kW, and 1,980 kW, respectively. At this time, CHP shared 275,940 Gcal, 72.8%, fuel cell 12,390 Gcal, 3.3%, and PLB 90,620 Gcal, 23.9%. The CHP capacity was not reduced because an uneconomical alternative was found that required excessive operation of the PLB for insufficient heat production resulting from the CHP capacity reduction. On the other hand, in terms of indirect heat demand for the paper industry, which is the dominant industry, the optimal capacity of CHP, fuel cell, and photovoltaic combination is 25,000 kW, 5,000 kW, and 2,000 kW. The heat production was analyzed to be CHP 225,053 Gcal, 76.5%, fuel cell 11,215 Gcal, 3.8%, PLB 58,012 Gcal, 19.7%. However, the economic analysis results of the current electricity market and gas market confirm that the return on investment is impossible. However, we confirmed that the CHP Hybrid System, which combines CHP, fuel cell, and solar power, can improve management conditions of about KRW 9.3 billion annually for a single CHP system.

Physicohemical Properties of Extruded Rice Flours and a Wheat Flour Substitute for Cookie Application (압출쌀가루의 이화학적 특성 및 밀가루 대체 쿠키 특성)

  • We, Gyoung Jin;Lee, Inae;Kang, Tae-Young;Min, Joo-Hong;Kang, Wie-Soo;Ko, Sanghoon
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.404-412
    • /
    • 2011
  • The purpose of this study is to prepare extruded rice flours suitable for baking rice cookies. The extruded rice flours were prepared at 100 and 130$^{\circ}C$ temperature and 25 and 27% moisture content in a co-rotating twin screw extruder. The rice extrudates were dried at 100$^{\circ}C$ for 18 hr and subsequently ground into the fine flour. Characteristics of the extruded rice flours were examined by rapid visco analysis, hydration property analysis, differential scanning calorimetry (DSC), and in vitro digestion test. Water absorption, solubility, and swelling power of all extruded rice flours were higher than those of native rice flour. DSC analysis showed that native rice flour had a peak at about 65$^{\circ}C$ while all extruded rice flours did not show any peaks since they were already gelatinized during the extrusion proess. Viscosity of the extruded rice flours decreased with increasing temperature and lowering moisture content in the extrusion proess. The extruded rice flours prepared at 130$^{\circ}C$ exhibited lower viscosity than those prepared at 100$^{\circ}C$. The operating temperature of the extrusion proess was critical for the starch digestion in vitro. The extruded rice flours prepared at 130$^{\circ}C$ showed a rapid decrease in digestible starch content while an increased level of slowly digestible starch content was observed compared to those treated at 100$^{\circ}C$ in the extruder. Cookies were prepared with a mixture of wheat flour and extruded rice flours at the ratio of 7 to 3. The cookies made with the extruded rice flours had lower spread factor and darker yellow color than those prepared with wheat flour only. Hardness of the extruded rice flour-added cookies was similar to that of the wheat flour cookie whereas their overall acceptance was better. Therefore the rice cookies partially supplemented with extruded rice flours may have a potential as early childhood foods which require soft texture and allergy reduction.

Growth and Flower Bud Induction in Strawberry 'Sulhyang' Runner Plant as Affected by Exogenous Application of Benzyladenine, Gibberellic Acid, and Salicylic Acid (벤질아데닌, 지베렐린산, 살리실산이 '설향' 딸기묘의 생장과 화아 유도에 미치는 영향)

  • Thi, Luc The;Nguyen, Quan Hoang;Park, Yoo Gyeong;Jeong, Byoung Ryong
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.178-184
    • /
    • 2019
  • Strawberry ($Fragaria{\times}ananassa$) is one of the most important and popular fruit crops in the world, and 'Sulhyang' is one of the principal cultivars cultivated in the Republic of Korea for the domestic market. The growth and flower induction in strawberry is the process which influences directly on fruit bearing and yield of this crop. In this study, effect of benzyladenine (BA), gibberellic acid ($GA_3$), and salicylic acid (SA) on growth and flower bud induction in strawberry 'Sulhyang' was investigated. The 3-week-old runner plants, grown in 21-cell propagation trays, were potted and cultivated in growth chambers with $25^{\circ}C/15^{\circ}C$ (day/night) temperatures, 70% relative humidity (RH), and light intensity of $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ photosynthetic photon flux density (PPFD) provided by white light emitting diodes (LEDs). The runner plants were treated with one of three concentrations, 0 (control), 100, and $200mg{\cdot}L^{-1}$ of BA, $GA_3$, or SA solution. The chemicals were sprayed two times on leaves of runner plants at an interval of two weeks. After 9 weeks the results showed that the application of all chemicals caused reduction of root length and chlorophyll (SPAD) content as compared to the control. The lowest chlorophyll (SPAD) content was recorded in plants treated with $GA_3$. However, the treatment of $200mg{\cdot}L^{-1}$ $GA_3$ promoted leaf area, leaf fresh weight, and plant fresh weight. The greatest flower induction (85%) and number of inflorescences (4.3 inflorescences per plant) were observed in the treatment of $200mg{\cdot}L^{-1}\;SA$, followed by $100mg{\cdot}L^{-1}\;SA$. Overall, results suggest that foliar application of $GA_3$ solution could accelerate plant growth, while foliar application of SA solution could induce hastened flowering. Further studies may be needed to find out the relationship between $GA_3$ and SA solutions treated in a combination, and the molecular mechanism involved in those responses observed.