• Title/Summary/Keyword: Reduction of carboxylic acid

Search Result 46, Processing Time 0.023 seconds

Selective Reduction with Lithium Borohydride. Reaction of Lithium Borohydride with Selected Organic Compounds Containing Representative Functional Groups (수소화붕소리튬에 의한 선택환원. 수소화붕소리튬과 대표적 유기화합물과의 반응)

  • Nung Min Yoon;Jin Soon Cha
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.2
    • /
    • pp.108-120
    • /
    • 1977
  • The approximate rates and stoichiometries of the reaction of lithium borohydride, with fifty two selected organic compounds containing representative functional groups under the standard condition (tetrahydrofuran, $0^{\circ}$), were studied.Among the active hydrogen compounds,primary alcohols and compounds containing an acidic proton liberated hydrogen relatively fast, but secondary and tertiary alcohols very sluggishly. All the carbonyl compounds examined were reduced rapidly within one hour. Especially, among the ${\alpha}{\beta}$-unsaturated carbonyl compounds tested, the aldehydes consumed one hydride cleanly, however the cyclic ketones consumed more than one hydride even at $-20^{\circ}$. Carboxylic acids were reduced very slowly, showing about 60% reduction in 6 days at $25^{\circ}$, however acyl chlorides reduced immediately within 30 minutes. On the other hand, the reductions of cyclic anhydrides proceeded moderately to the hydroxy acid stage, however the further reductions were very slow. Aromatic and aliphatic esters, with exception of the relatively moderate reduction of acetate, were reduced very slowly, however lactones were reduced at a moderate rate. Epoxides reacted slowly, but amides and nitriles as well as the nitro compounds were all inert to this reagent. And cyclohexanone oxime and phenyl isocyanate were reduced very sluggishly. Last of all, all sulfur compounds studied were inert to this hydride.

  • PDF

A Study on the Pharmacetical Characteristics & Analysis of Glycyrrhizin Extract (감초 추출물의 약리적 특성 및 분석)

  • Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.215-222
    • /
    • 2006
  • From experiment results on pharmacetical characteristics and analysis of Glycyrrhizin extract, some conclusions are obtained as follows. From results on extract experiment of Glycyrrhizin, it appeared about 8%-extraction ratio as semi-solid state, and after dried in freezing from Glycyrrhizin extract of semi-solid state, it obtained about 70%-Glycyrrhizin extract as solid state of yellow gold color. From results on antimicrobial experiment of Glycyrrhizin extract, number of S-typhimurium and Fungus in microbe decreased more and more according to time passage. This phenomenon shows that Glycyrrhizin extract keeps antimicrobial effect. From results on antioxidation experiment of Glycyrrhizin extract, DPPH scavenging activity of free radical shows that Glycyrrhizin extract appears more remarkable reduction ability than reference samples. This phenomenon means that antioxidation of Glycyrrhizin extract appears higher than Vitamin-C and BHA. From results on instrument analysis, the fatty and aromatic components of 2-pentanone, cyclohexasiloxane, tetrasiloxane, benzoquinoline-2-carboxylic acid etcs from Glycyrrhizin extract was detected with GC/MS and inorganic components of Ca, Mg, Ti, Zn, Fe etcs from Glycyrrhizin extract was detected with ICP/OES.

Packing Density Parameters of Palladium Nanoparticle Monolayers Fabricated via Spin-Coating Electrostatic Self-Assembly

  • An, Minshi;Hong, Jong-Dal;Cho, Kyung-Sang;Lee, Eun-Sung;Choi, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.623-626
    • /
    • 2008
  • Spin-coating electrostatic self-assembly (SCESA) is utilized to fabricate a single layer of carboxylic-acid-coated Pd nanoparticles (NPs) (D??5 nm) on an oppositely charged surface. The packing density of a NP monolayer formed on a rotating solid substrate (3000 rpm) was examined with regards to various parameters, including the particle concentration, the pH, and the ionic strength of the solution. Initially, the packing density grew exponentially with increases in the particle concentration, up to a maximum value (of 8.4 ´ 1011/cm2) at 1.2 wt%. The packing density was also found to increase drastically as the pH decreased and the ionic strength of the solution increased; these trends can be attributed to a reduction in the interparticle repulsions among the NPs in the solution and on the substrate. The best result of this study was achieved in a 1.2 wt% solution at pH 8; under these conditions, an NP monolayer with the highest density (namely, 1.6 ´ 1012/cm2) was obtained.

Graphene Oxide as a Novel Nanoplatform for Direct Hybridization of Graphene-SnO2

  • Park, Hun;Han, Tae Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3269-3273
    • /
    • 2013
  • Graphene oxide (GO) has been of particular interest because it provides unique properties due to its high surface area, chemical functionality and ease of mass production. GO is produced by chemical exfoliation of graphite and is decorated with oxygen-containing groups such as phenol hydroxyl, epoxide groups and ionizable carboxylic acid groups. Due to the presence of those functional groups, GO can be utilized as a novel platform for hybrid nanocomposites in chemical synthetic approaches. In this work, GO-$SnO_2$ nanocomposites have been prepared through the spontaneous formation of molecular hybrids. When $SnO_2$ precursor solution and GO suspension were simply mixed, $Sn^{2+}$ was spontaneously formed into $SnO_2$ nanoparticles upon the deoxygenation of GO. Through further chemical reduction by adding hydrazine, reduced GO-$SnO_2$ hybrid was finally created. Our investigation for the electrocapacitive properties of hybrid electrode showed the enhanced performance (389 F/g), compared with rGO-only electrode (241 F/g). Our approach offers a scalable, robust synthetic route to prepare graphene-based nanocomposites for supercapacitor electrode via spontaneous hybridization.

Reduction of Representative Organic Functional Groups with Gallane-Trimethylamine

  • 최정훈;오영주;김민정;황북기;백대진
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.274-280
    • /
    • 1997
  • The rates and stoichiometry of the reaction of gallane-trimethylamine with selected organic compounds containing representative functional groups were examined in tetrahydrofuran solution under standardized conditions (THF, 0 ℃). And its reducing characteristics were compared with those of aluminum hydride-triethylamine(AHTEA). The rate of hydrogen evolution from active hydrogen compounds varied considerably with the nature of the functional group and the structure of the hydrocarbon moiety. Alcohols, phenol, amines, thiols evolved hydrogen rapidly and quantitatively. Aldehydes and ketones were reduced moderately to the corresponding alcohols. Cinnamaldehyde was reduced to cinnamyl alcohol, which means that the conjugated double bond was not attacked by gallane-trimethylamine. Carboxylic acids, esters, and lactones were stable to the reagent under standard conditions. Acid chlorides also were rapidly reduced to the corresponding alcohols. Epoxides and halides were inert to the reagent. Caproamide and nitrile were stable to the reagent, whereas benzamide was rapidly reduced to benzylamine. Nitropropane, nitrobenzene and azoxybenzene were stable to the reagent, whereas azobenzene was reduced to 1,2-diphenylhydrazine. Oximes and pyridine N-oxide were reduced rapidly. Di-n-butyl disulfide and dimethyl sulfoxide were reduced only slowly, but diphenyl disulfide was reduced rapidly. Finally, sulfones and sulfonic acids were inert to the reagent under the reaction.

Production of 4-Hydroxybenzyl Alcohol Using Metabolically Engineered Corynebacterium glutamicum (대사공학에 의해 개발된 코리네박테리움 글루타미컴에 의한 4-히드록시벤질 알코올 생산)

  • Kim, Bu-Yeon;Jung, Hye-Bin;Lee, Ji-Yeong;Ferrer, Lenny;Purwanto, Henry Syukur;Lee, Jin-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.506-514
    • /
    • 2020
  • 4-Hydroxybenzyl alcohol (4-HB alcohol) is one of the major active components of Gastrodia elata Blume, with beneficial effects on neurological disorders such as headache, convulsive behavior, and dizziness. Here, we developed a metabolically engineered Corynebacterium glutamicum strain able to produce 4-HB alcohol from 4-hydroxybenzoate (4-HBA). First, the strain APS963 was obtained from the APS809 strain via the insertion of aroK from Methanocaldococcus jannaschii into the NCgl2922-deleted locus. As carboxylic acid reductase from Nocardia iowensis catalyzes the reduction of 4HBA to 4-hydroxybenzaldehyde (4-HB aldehyde), we then introduced a codon-optimized car gene into the genome of APS963, generating the GAS177 strain. Then, we deleted creG coding for a putative short-chain dehydrogenase and inserted ubiCpr encoding a product-resistant chorismate-pyruvate lyase into the pcaHG-deleted locus. The resulting engineered GAS355 strain accumulated 2.3 g/l 4-HB alcohol with 0.32 g/l 4-HBA and 0.3 g/l 4-HB aldehyde as byproducts from 8% glucose after 48 h of culture.

Selective Reduction with Zinc Borohydride. Reaction of Zinc Borohydride with Selected Organic Compounds Containing Representative Functional Groups (수소화붕소아연에 의한 선택환원. 수소화붕소아연의 대표적 유기화합물과의 반응)

  • Yoon Nung Min;Ho Jun Lee;Hye Kyu Kim;Jahyo Kang
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.59-72
    • /
    • 1976
  • The addition of one mole of zinc chloride to 2.33 moles of sodium borohydride in tetrahydrofuran at room temperature gave a clear chloride-free supernatant solution of zinc borohydride after stirring three days and standing at room temperature.The approximate rates and stoichiometry of the reaction of zinc borohydride with 54 selected organic compounds were determined in order to test the utility of the reagent as a selective reducing agent. Aldehydes and ketones were reduced rapidly, aromatic ketones being somewhat slowly, and the double bond of cinnamaldehyde was not attacked. Acyl halides were reduced rapidly within one hour, but acid anhydrides were reduced at a moderate rate. Carboxylic acids, both aliphatic and aromatic, were slowly reduced to alcoholic stage. Esters were inert to this reagent but a cyclic ester, γ-butyrolactone, was slowly attacked. Primary amides were reduced slowly with partial evolution of hydrogen, whereas tertiary amides underwent neither reduction nor hydrogen evolution. Epoxides and nitriles were all inert, as well as nitro, azo, and azoxy compounds. Cyclohexanone oxime and phenyl isocyanate were reduced slowly but pyridine was inert. Disulfide, sulfoxide, sulfone and sulfonic acids were stable to this reagent.

  • PDF

Isolation, Characterization, and Use for Plant Growth Promotion Under Salt Stress, of ACC Deaminase-Producing Halotolerant Bacteria Derived from Coastal Soil

  • Siddikee, M.A.;Chauhan, P.S.;Anandham, R.;Han, Gwang-Hyun;Sa, Tong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1577-1584
    • /
    • 2010
  • In total, 140 halotolerant bacterial strains were isolated from both the soil of barren fields and the rhizosphere of six naturally growing halophytic plants in the vicinity of the Yellow Sea, near the city of Incheon in the Republic of Korea. All of these strains were characterized for multiple plant growth promoting traits, such as the production of indole acetic acid (IAA), nitrogen fixation, phosphorus (P) and zinc (Zn) solubilization, thiosulfate ($S_2O_3$) oxidation, the production of ammonia ($NH_3$), and the production of extracellular hydrolytic enzymes such as protease, chitinase, pectinase, cellulase, and lipase under in vitro conditions. From the original 140 strains tested, on the basis of the latter tests for plant growth promotional activity, 36 were selected for further examination. These 36 halotolerant bacterial strains were then tested for 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. Twenty-five of these were found to be positive, and to be exhibiting significantly varying levels of activity. 16S rRNA gene sequencing analyses of the 36 halotolerant strains showed that they belong to 10 different bacterial genera: Bacillus, Brevibacterium, Planococcus, Zhihengliuella, Halomonas, Exiguobacterium, Oceanimonas, Corynebacterium, Arthrobacter, and Micrococcus. Inoculation of the 14 halotolerant bacterial strains to ameliorate salt stress (150 mM NaCl) in canola plants produced an increase in root length of between 5.2% and 47.8%, and dry weight of between 16.2% and 43%, in comparison with the uninoculated positive controls. In particular, three of the bacteria, Brevibacterium epidermidis RS15, Micrococcus yunnanensis RS222, and Bacillus aryabhattai RS341, all showed more than 40% increase in root elongation and dry weight when compared with uninoculated salt-stressed canola seedlings. These results indicate that certain halotolerant bacteria, isolated from coastal soils, have a real potential to enhance plant growth under saline stress, through the reduction of ethylene production via ACC deaminase activity.

Enhancement of Solubility and Nanonization of Phenolic Compound in Extrudate from Angelica gigas Nakai by Hot Melt Extrusion using Surfactant (유화제 첨가 용융압출을 이용한 참당귀 성형체의 페놀성분 나노화 및 용해도 향상)

  • Azad, Md Obyedul Kalam;Cho, Hyun Jong;Go, Eun Ji;Lim, Jung Dae;Park, Cheol Ho;Kang, Wie Soo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.4
    • /
    • pp.317-327
    • /
    • 2018
  • Background: The root of Angelica gigas Nakai is used as a traditional herbal medicine in Korea for the treatment of many diseases. However, the poor water solubility of the active components in A. gigas Nakai is a major obstacle to its bioavailability. Methods and Results: This work aimed at enhancing the solubility of the active compounds of A. gigas Nakai by a chemical (using a surfactant) and physical (hot melt extrusion, HME) crosslinking method. Fourier transform infrared spectroscopy revealed multiple peaks in the case of the extrudate solids, attributable to new functional groups including carboxylic acid, alkynes, and benzene derivatives. Differential scanning calorimetry analysis showed that the extrudate soilid had a lower glass transition temperature ($T_g$) and enthalpy (${\Delta}H$) ($T_g:43^{\circ}C$, ${\Delta}H$ : < 6 J/g) as compared to the non-extrudate ($T_g:68.5^{\circ}C$, ${\Delta}H:123.2$) formulations. X-ray powder diffraction analysis revealed the amorphization of crystalline materials in the extrudate solid. In addition, enhanced solubility (53%), nanonization (403 nm), and a higher amount of extracted phenolic compounds were achieved in the extrudate solid than in the non-extrudate (solubility : 36%, nanonization : 1,499 nm) formulation. Among the different extrudates, acetic acid and span 80 mediated formulations showed superior extractions efficiency. Conclusions: HME successfully enhanced the production of amorphous nano dispersions of phenolic compound including decursin from extrudate solid formulations.

Physicochemical Characterization of Extrudate Solid Formulation of Angelica gigas Nakai Prepared by Hot Melt Extrusion Process

  • Azad, Md Obyedul Kalam;Cho, Hyun Jong;Koo, Ja Seong;Park, Cheol Ho;Kang, Wie Soo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.72-72
    • /
    • 2018
  • The root of Angelica gigas Nakai (AGN) is used as a traditional herbal medicine in Korea for the treatment of many diseases. However, a major challenge associated with the usage of the active compounds from AGN is their poor water solubility. Therefore, this work aimed to enhance the solubility of active compounds by a chemical (viz. surfactant) and physical (hot melt extrusion) crosslinking method (CPC). Infrared Fourier transform spectroscopy (FT-IR) revealed multiple peaks in extrudate solids representing new functional groups including carboxylic acid, alkynes and benzene derivatives. Differential scanning calorimetry (DSC) analysis of the extrudate showed lower glass transition temperature (Tg) and lower enthalpy (${\Delta}H$) (Tg: $43^{\circ}C$; ${\Delta}H$: <6 (J/g)) compared to the non-extrudate (Tg $68.5^{\circ}C$; ${\Delta}H$: 123.2) formulations. X-ray powder diffraction (XRD) analysis revealed amorphization of crystal materials in extrudate solid. In addition, nanonization, enhanced solubility and higher extraction of phenolic compounds were achieved in the extrudate solid. Among the different extrudates, acetic acid- and Span 80-mediated formulations showed superior extractions. We conclude that the CPC method successfully enhanced the production of amorphous nano dispersions from extrudate solid formulations.

  • PDF