Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.11.3269

Graphene Oxide as a Novel Nanoplatform for Direct Hybridization of Graphene-SnO2  

Park, Hun (Department of Organic and Nano Engineering, Hanyang University)
Han, Tae Hee (Department of Organic and Nano Engineering, Hanyang University)
Publication Information
Abstract
Graphene oxide (GO) has been of particular interest because it provides unique properties due to its high surface area, chemical functionality and ease of mass production. GO is produced by chemical exfoliation of graphite and is decorated with oxygen-containing groups such as phenol hydroxyl, epoxide groups and ionizable carboxylic acid groups. Due to the presence of those functional groups, GO can be utilized as a novel platform for hybrid nanocomposites in chemical synthetic approaches. In this work, GO-$SnO_2$ nanocomposites have been prepared through the spontaneous formation of molecular hybrids. When $SnO_2$ precursor solution and GO suspension were simply mixed, $Sn^{2+}$ was spontaneously formed into $SnO_2$ nanoparticles upon the deoxygenation of GO. Through further chemical reduction by adding hydrazine, reduced GO-$SnO_2$ hybrid was finally created. Our investigation for the electrocapacitive properties of hybrid electrode showed the enhanced performance (389 F/g), compared with rGO-only electrode (241 F/g). Our approach offers a scalable, robust synthetic route to prepare graphene-based nanocomposites for supercapacitor electrode via spontaneous hybridization.
Keywords
Graphene oxide; $SnO_2$; Supercapacitors; Hybrid; Nanocomposites;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li, D.; Kaner, R. B. Science 2008, 320, 1170.   DOI   ScienceOn
2 Compton, C.; Nguyen, T. Small 2010, 6, 711.   DOI   ScienceOn
3 Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. Nat. Nanotechnol. 2009, 4, 25.   DOI   ScienceOn
4 Jeon, Y.; Shin, Y. R.; Sohn, J. H.; Choi, H. J.; Bae, S. Y.; Mahmood, J.; Jung, S. M.; Seo, J. M.; Kim, M. J.; Chang, D. W.; Dai, J. M.; Baek, J. B. P. Nat. Acad. Sci. USA 2012, 109, 5588.   DOI   ScienceOn
5 Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Y.; De, S.; McGovern, I. C.; Holland, B.; Byrne, M.; Gun'ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, T. N. Nat. Nanotechnol. 2008, 3, 563.   DOI   ScienceOn
6 Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.   DOI   ScienceOn
7 Xu, Z.; Gao, C. Nat. Commun. 2011, 2, 571.   DOI   ScienceOn
8 Kim, J. E.; Han, T. H.; Lee, S. H.; Kim, J. Y.; Ahn, C. W.; Yun, J. M.; Kim, S. O. Angew. Chem. Int. Ed. 2011, 50, 3043.   DOI   ScienceOn
9 Han, T. H.; Huang, Y. K.; Tan, A. T. L.; Dravid, V. P.; Huang, J. J. Am. Chem. Soc. 2011, 133, 15264.   DOI   ScienceOn
10 Han, T. H.; Lee, W. J.; Lee, D. H.; Kim, J. E.; Choi, E. Y.; Kim, S. O. Adv. Mater. 2010, 22, 2060.   DOI   ScienceOn
11 Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L. C. Carbon 2011, 49, 2917.   DOI   ScienceOn
12 Lu, T.; Zhang, Y. P.; Li, H. B.; Pan, L. K.; Li, Y. L.; Sun, Z. Electrochim. Acta 2010, 55, 4170.   DOI   ScienceOn
13 Wu, Z. S.; Wang, D. W.; Ren, W.; Zhao, J.; Zhou, G.; Li, F.; Cheng, H. M. Adv. Funct. Mat. 2010, 20, 3595.   DOI   ScienceOn
14 Qiu, G. H.; Dharmarathna, S.; Zhang, Y. S.; Opembe, N.; Huang, H.; Suib, S. L. J. Phys. Chem. C 2012, 116, 468.   DOI   ScienceOn
15 Zou, W. B.; Zhu, J. W.; Sun, Y. X.; Wang, X. Mater. Chem. Phys. 2011, 125, 617.   DOI   ScienceOn
16 An, G. M.; Na, N.; Zhang, X. R.; Miao, Z. J.; Miao, S. D.; Ding, K. L.; Liu, Z. M. Nanotechnology 2007, 18, 435707.   DOI   ScienceOn
17 Guo, Z. P.; Du, G. D.; Nuli, Y.; Hassan, M. F.; Liu, H. K. J. Mater. Chem. 2009, 19, 3253.   DOI   ScienceOn
18 Wang, H. L.; Casalongue, H. S.; Liang, Y. Y.; Dai, H. J. J. Am. Chem. Soc. 2010, 132, 7472.   DOI   ScienceOn
19 Li, F. H.; Song, J. F.; Yang, H. F.; Gan, S. Y.; Zhang, Q. X.; Han, D. X.; Ivaska, A.; Niu, L. Nanotechnology 2009, 20, 455602.   DOI   ScienceOn
20 Ding, S. J.; Luan, D. Y.; Boey, F. Y. C.; Chen, J. S.; Lou, X. W. Chem. Comm. 2011, 47, 7155.   DOI   ScienceOn
21 Han, T. H.; Oh, J. K.; Park, J. S.; Kwon, S. H.; Kim, S. W.; Kim, S. O. J. Mater. Chem. 2009, 19, 3512.   DOI   ScienceOn
22 van Esch, J. H.; Feringa, B. L. Angew. Chem. Int. Ed. 2000, 39, 2263.   DOI
23 Brodie, B. C. Philos. Philos. T. R. Soc. 1859, 149, 249.   DOI
24 Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.   DOI
25 Weiss, R. G.; Terech, P. In Molecular Gels; Springer; 2006; Chapter 8.
26 Chen. S. Q.; Wang, Y. J. Mater. Chem. 2010, 20, 9735.   DOI   ScienceOn
27 Wang, W. J.; Hao, Q. L.; Lei, W.; Xia, X. F.; Wang, X. RSC Adv. 2012, 2, 10268.   DOI   ScienceOn
28 An, G. M.; Yu, P.; Xiao, M. J.; Liu, Z. M.; Miao, Z. J.; Ding, K. L.; Mao, L. Q. Nanotechnology 2008, 19, 275709.   DOI   ScienceOn
29 Zhou, X.; Wan, L. J.; Guo, Y. G. Adv. Mater. 2013, DOI 10. 1002/ adma.201300071.
30 Song, H. J.; Zhang, L. C.; He, C. L.; Qu, Y.; Tian, Y. F.; Lv, Y. J. Mater. Chem. 2011, 21, 5972.   DOI   ScienceOn
31 Stoller, M. D.; Park, S.; Zhu, Y. W.; An, J. H.; Ruoff, R. S. Nano Lett. 2008, 8, 3498.   DOI   ScienceOn
32 Fan, Z. J.; Yan, J.; Wei, T.; Zhi, L. J.; Ning, G. Q.; Li, T. Y.; Wei, F. Adv. Funct. Mater. 2011, 21, 2366.   DOI   ScienceOn
33 Dong, X. C.; Xu, H.; Wang, X. W.; Huang, Y. X.; Chan-Park, M. B.; Zhang, H.; Wang, L. H.; Huang, W.; Chen, P. ACS Nano 2012, 6, 3206.   DOI   ScienceOn