• Title/Summary/Keyword: Reduction and oxidation

Search Result 1,433, Processing Time 0.037 seconds

Electrochemical Treatment of Dye Wastewater Using Fe, RuO2/Ti, PtO2/Ti, IrO2/Ti and Graphite Electrodes (RuO2/Ti, PtO2/Ti, IrO2/Ti 및 흑연전극을 이용한 염료폐수의 전기화학적 처리)

  • Kim, A Ram;Park, Hyun Jung;Won, Yong Sun;Lee, Tae Yoon;Lee, Jae Keun;Lim, Jun Heok
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.16-28
    • /
    • 2016
  • Textile industry is considered as one of the most polluting sectors in terms of effluent composition and volume of discharge. It is well known that the effluents from textile dying industry contain not only chromatic substances but also large amounts of organic compounds and insolubles. The azo dyes generate huge amount of pollutions among many types of pigments. In general, the electrochemical treatments, separating colors and organic materials by oxidation and reduction on electrode surfaces, are regarded as simpler and faster processes for removal of pollutants compared to other wastewater treatments. In this paper the electrochemical degradation characteristics of dye wastewater containing CI Direct Blue 15 were analyzed. The experiments were performed with various anode materials, such as RuO2/Ti, PtO2/Ti, IrO2/Ti and graphite, with stainless steel for cathode. The optimal anode material was located by changing operating conditions like electrolyte concentration, current density, reaction temperature and initial pH. The degradation efficiency of dye wastewater increased in proportion to the electrolyte concentration and the current density for all anode materials, while the temperature effect was dependent on the kind. The performance orders of anode materials were RuO2/Ti > PtO2/Ti > IrO2/Ti > graphite in acid condition and RuO2/Ti > IrO2/Ti > PtO2/Ti > graphite in neutral and basic conditions. As a result, RuO2/Ti demonstrated the best performance as an anode material for the electrochemical treatment of dye wastewater.

EFFECT OF 10% CARBAMIDE PEROXIDE ON DENTIN (상아질에 대한 10% Carbamide peroxide가 미치는 영향)

  • Seo, Sang-Woo;Kown, Yong-Hoon;Kim, Hyun-Jung;Nam, Soon-Hyeun;Kim, Kyo-Han;Kim, Young-Jin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.3
    • /
    • pp.423-430
    • /
    • 2003
  • The teeth bleaching with bleaching agent is widely used at recent times. Until yet the exact mechanism of the bleaching agent isn't known but it is thought that is by the complex reduction-oxidation reaction of the decomposed free radical from bleaching agent through various ways. In other words, it is supposed that the teeth are whitened by agent's changing chemical structures of stain-causing materials. The purpose of this study is to exam the change of the dentinal character by bleaching agent and to evaluate the safety of this agent. For this study, after applying 10% carbamide peroxide to enamel of human premolar for 6 hours a day for 2 weeks we examined changes of surface morphology, microhardness, composition and contents of minirals in human dentin using SEM, microhardness tester, FT-Raman spectrometer and EPMA and got following results. There was no significant difference in surface morphologic change when we examined the effect of 10% carbamide peroxide which penetrated into dentin after applied on enamel surface comparing with result from specimen in distilled water No change was shown on the surface of peritubular and intertubular dentin within the nanometeric range. The microhardness between bleached teeth and teeth stored in distilled water showed no statistically significant difference FT-Raman spectra of dentin exhibited no change of the component in human dentin. Only the least change in peaks of organic and inorganic materials were detected in Raman intencity. The total content of mineral elements in dentin with no treatment, stored only in distilled water and stored in distilled water after bleaching were $98.73{\pm}1.89,\;98.56{\pm}2.11\;and\;97.47{\pm}2.51$ respectively. Also they showed no statistically significant difference. From above results, the effect of 10% carbamide peroxide bleaching on structure of dentin is very low and the results may confirm the safety of this bleaching agent.

  • PDF

A Study on the Resource Recovery of Fe-Clinker generated in the Recycling Process of Electric Arc Furnace Dust (전기로 제강분진의 재활용과정에서 발생되는 Fe-Clinker의 자원화에 관한 연구)

  • Jae-hong Yoon;Chi-hyun Yoon;Hirofumi Sugimoto;Akio Honjo
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.50-59
    • /
    • 2023
  • The amount of dust generated during the dissolution of scrap in an electric arc furnace is approximately 1.5% of the scrap metal input, and it is primarily collected in a bag filter. Electric arc furnace dust primarily consists of zinc and ion. The processing of zinc starts with its conversion into pellet form by the addition of a carbon-based reducing agent(coke, anthracite) and limestone (C/S control). These pellets then undergo reduction, volatilization, and re-oxidation in rotary kiln or RHF reactor to recover crude zinc oxide (60%w/w). Next, iron is discharged from the electric arc furnace dust as a solid called Fe clinker (secondary by-product of the Fe-base). Several methods are then used to treat the Fe clinker, which vary depending on the country, including landfilling and recycling (e.g., subbase course material, aggregate for concrete, Fe-source for cement manufacturing). However, landfilling has several drawbacks, including environmental pollution due to leaching, high landfill costs, and wastage of iron resources. To improve Fe recovery in the clinker, we pulverized it into optimal -sized particles and employed specific gravity and magnetic force selection methods to isolate this metal. A carbon-based reducing agent and a binding material were added to the separated coarse powder (>10㎛) to prepare briquette clinker. A small amount (1-3%w/w) of the briquette clinker was charged with the scrap in an electric arc furnace to evaluate its feasibility as an additives (carbonaceous material, heat-generating material, and Fe source).

Effect of Immersion Liquids on Quality Characteristics of Peeled Taro during Storage (박피 토란의 저장중 품질특성에 미치는 침지액의 영향)

  • Park, Kee-Jai;Lee, Ho-Joon;Kim, Jong-Hoon;Kwon, Ki-Hyun;Jeong, Jin-Woong
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.742-750
    • /
    • 2006
  • This study was carried out to investigate the efficacy of two kinds of electrolyzed water with added 0.5% (v/v) citron juice, SAEW-CJ[Strong Acidic Electrolyzed Water with added Citron Juice, pH 2.57, ORP (oxidation-reduction potential) 1,122 mV, HClO 23.05ppm] and LAEW-CJ (Low Alkaline Electrolyzed Water with added Citron Juice, pH 4.67, ORP 997mV, HClO 42.55mV) as storing liquid for peeled taro. During storage at $5^{\circ}C$ until 30 days, SAEW-CJ and LAEW-CJ inhibited the growth of microorganisms more effectively than 0.2% (w/v) APS (aluminium potassium sulfate) and 0.85% (w/v) NaCl did. Total phenolic contents, PRO (polyphenol oxidase) activity, color differences value (${\Delta}E$) and vitamin C contents of peeled taro stored in SAEW-CJ and LAEW-CJ were lower than those stored in 0.2% APS and 0.85% NaCl. The hardness decrement of peeled taro stored in LAEW-CJ was lower than that of the others. In addition, the contents of moisture, crude protein, crude ash, total sugars, and reducing sugars were gradually decreased during storage. However, no difference by peeling methods or immersion liquid was found.

Evaluation of Single and Stacked MFC Performances under Different Dissolved Oxygen Concentrations in Cathode Chamber (환원전극 DO 농도에 따른 단일 및 직렬연결 미생물연료전지 전기발생량 평가)

  • Yu, Jae-Cheul;Lee, Tae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.249-255
    • /
    • 2009
  • The performance of microbial fuel cell (MFC) can be affected by many factors including the rate of organic matter oxidation, the electron transfer to electrode by electrochemical bacteria, proton diffusion, the concentration of electron acceptor, the rate of electron acceptor reduction and internal resistance. the performance of MFC using oxygen as electron acceptor can be influenced by oxygen concentration as limit factors in cathode compartment. Many studies have been performed to enhance electricity production from MFC. The series or parallel stacked MFC connected several MFC units can use to increase voltages and currents produced from MFCs. In this study, a single MFC (S-MFC) and a stacked MFC (ST-MFC) using acetate as electron donor and oxygen as electron acceptor were used to investigate the influence of dissolved oxygen (DO) concentrations in cathode compartment on MFC performance. The power density (W/$m^3$) of S-MFC was in order DO 5 > 3 > 7 > 9 mg/L, the maximum power density (W/$m^3$) of S-MFC was 42 W/$m^3$ at DO 5 mg/L. The power density (W/$m^3$) of ST-MFC was in order DO 5 > 7 > 9 > 3 mg/L and the maximum power density (W/$m^3$) of STMFC was 20 W/$m^3$ at DO 5 mg/L. These results suggest that the DO concentration of cathode chamber should be considered as important limit factor of MFC operation and design for stacked MFC as well as single MFC. The results of ST-MFC operation showed the voltage decrease of some MFC units by salt formation on the surface of anode, resulting in decrease total voltage of ST-MFC. Therefore, connecting MFC units in parallel might be more appropriate way than series connections to enhance power production of stacked MFC.

Voltammetric Sensor Incorporated with Conductive Polymer, Tyrosinase, and Ionic Liquid Electrolyte for Bisphenol F (전도성고분자, 티로시나아제 효소 및 이온성 액체 전해질을 융합한 전압전류법 기반의 비스페놀F 검출 센서)

  • Sung Eun Ji;Sang Hyuk Lee;Hye Jin Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.258-263
    • /
    • 2023
  • In this study, conductive polymers and the enzyme tyrosinase (Tyr) were deposited on the surface of a screen printed carbon electrode (SPCE), which can be fabricated as a disposable sensor chip, and applied to the detection of bisphenol F (BPF), an endocrine disruptor with proven links to male diseases and thyroid disorders, using electrochemical methods. On the surface of the SPCE working electrode, which was negatively charged by oxygen plasma treatment, a positively charged conductive polymer, poly(diallyldimethyl ammonium chloride) (PDDA), a negatively charged polymer compound, poly(sodium 4-styrenesulfonate) (PSS), and another layer of PDDA were layered by electrostatic attraction in the order of PDDA, PSS, and finally PDDA. Then, a layer of Tyr, which was negatively charged due to pH adjustment to 7.0, was added to create a PDDA-PSS-PDDA-Tyr sensor for BPF. When the electrode sensor is exposed to a BPF solution, which is the substrate and target analyte, 4,4'-methylenebis(cyclohexa-3,5-diene-1,2-dione) is generated by an oxidation reaction with the Tyr enzyme on the electrode surface. The reduction process of the product at 0.1 V (vs. Ag/AgCl) generating 4,4'-methylenebis(benzene-1,2-diol) was measured using cyclic and differential pulse voltammetries, resulting in a change in the peak current with respect to the concentration of BPF. In addition, we compared the detection performance of BPF using an ionic liquid electrolyte as an alternative to phosphate-buffered saline, which has been used in many previous sensing studies. Furthermore, the selectivity of bisphenol S, which acts as an interfering substance with a similar structure to BPF, was investigated. Finally, we demonstrated the practical applicability of the sensor by applying it to analyze the concentration of BPF in real samples prepared in the laboratory.

Characteristics on De-CH4/NOx according to Ceramic and Metal Substrates of SCR Catalysts for CNG Buses (CNG 버스용 SCR 촉매의 세라믹과 메탈 담체에 따른 De-CH4/NOx 특성)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.18-24
    • /
    • 2018
  • The policy-making and technological development of eco-friendly automobiles designed to increase their supply is ongoing, but the internal combustion engine still accounts for about 95% of the automobiles in use. Also, in order to meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is gradually increasing. Natural gas is a clean fuel that emits few air pollutants and has been used mainly as a fuel for city buses. In the long term, we intend to develop a new NGOC/LNT+NGCO/SCR combined system that simultaneously reduces the toxic gases, $CH_4$ and NOx, emitted from CNG buses. The objective of this study is to investigate the characteristics of $de-CH_4/NOx$ according to the ceramic and metal substrates of the SCR (Selective Catalytic Reduction) catalysts mounted downstream of the combined system. The V and Cu-SCR catalysts did not affect the $CH_4$ oxidation reaction, the two NGOC/SCR catalysts each coated with two layers began to oxidize $CH_4$ at $400^{\circ}C$, and the amount of $CH_4$ emitted was reduced to about 20% of its initial value at about $550^{\circ}C$. The two NGOC/SCR catalysts each coated with two layers showed a negative (-) NOx conversion rate above $350^{\circ}C$. The ceramic-based combined system reached LOT50 at $500^{\circ}C$, which was about 20% higher in terms of the $CH_4$ conversion rate than the metal-based combined system, showing that the combined system of NGOC/LNT+Cu-SCR is a suitable combination.

Innovative Technology of Landfill Stabilization Combining Leachate Recirculation with Shortcut Biological Nitrogen Removal Technology (침출수 재순환과 생물학적 단축질소제거공정을 병합한 매립지 조기안정화 기술 연구)

  • Shin, Eon-Bin;Chung, Jin-Wook;Bae, Woo-Keun;Kim, Seung-Jin;Baek, Seung-Cheon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1035-1043
    • /
    • 2007
  • A leachate containing an elevated concentration of organic and inorganic compounds has the potential to contaminate adjacent soils and groundwater as well as downgradient areas of the watershed. Moreover high-strength ammonium concentrations in leachate can be toxic to aquatic ecological systems as well as consuming dissolved oxygen, due to ammonium oxidation, and thereby causing eutrophication of the watershed. In response to these concerns landfill stabilization and leachate treatment are required to reduce contaminant loading sand minimize effects on the environment. Compared with other treatment technologies, leachate recirculation technology is most effective for the pre-treatment of leachate and the acceleration of waste stabilization processes in a landfill. However, leachate recirculation that accelerates the decomposition of readily degradable organic matter might also be generating high-strength ammonium in the leachate. Since most landfill leachate having high concentrations of nitrogen also contain insufficient quantities of the organic carbon required for complete denitrification, we combined a shortcut biological nitrogen removal (SBNR) technology in order to solve the problem associated with the inability to denitrify the oxidized ammonium due to the lack of carbon sources. The accumulation of nitrite was successfully achieved at a 0.8 ratio of $NO_2^{-}-N/NO_x-N$ in an on-site reactor of the sequencing batch reactor (SBR) type that had operated for six hours in an aeration phase. The $NO_x$-N ratio in leachate produced following SBR treatment was reduced in the landfill and the denitrification mechanism is implied sulfur-based autotrophic denitrification and/or heterotrophic denitrification. The combined leachate recirculation with SBNR proved an effective technology for landfill stabilization and nitrogen removal in leachate.

Synthesis and Electrochemical Properties of Carbon Coated Li4Ti5O12 using PVC (PVC를 원료로 탄소코팅한 Li4Ti5O12의 합성 및 전기화학적 특성)

  • Hyun, Si-Cheol;Na, Byung-Ki
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.77-84
    • /
    • 2018
  • In this study, $Li_4Ti_5O_{12}$ anode materials for lithium ion battery were synthesized by dry ball-mill method. Polyvinyl chloride (PVC) as a carbon source was added to improve electrochemical properties. When the PVC was added after $Li_4Ti_5O_{12}$ formation, the spinel structure was well synthesized and it was confirmed by X-ray diffraction (XRD) experiments. When the carbon material was added before the synthesis and the heat treatment was performed, it was confirmed that a material having a different crystal structure was synthesized even when a small amount of carbon material was added. In the case of $Li_4Ti_5O_{12}$ without the carbon material, the electrical conductivity value was about $10{\mu}S\;m^{-1}$, which was very small and similar to that of the nonconductor. As the carbon was added, the electrical conductivity was greatly improved and increased up to 10,000 times. Electrochemical impedance spectroscopy (EIS) analysis showed that the size of semicircle corresponding to the resistance decreased with the carbon addition. This indicates that the resistance inside the electrode is reduced. According to the Cyclic voltammetry (CV) analysis, the potential difference between the oxidation peak and the reduction peak was reduced with carbon addition. This means that the rate of lithium ion insertion and deinsertion was increased. $Li_4Ti_5O_{12}$ with 9.5 wt% PVC added sample showed the best properties in rate capabilities of $180mA\;h\;g^{-1}$ at 0.2 C-rate, $165mA\;h\;g^{-1}$ at 0.5 C-rate, and $95.8mA\;h\;g^{-1}$ at 5 C-rate.

Microbial Population Diversity of the Mud Flat in Suncheon Bay Based on 16S rDNA Sequences and Extracellular Enzyme Activities (남해안 갯벌 미생물의 세포외효소 활성 및 16S rDNA 분석에 의한 다양성 조사)

  • Kim, Yu-Jeong;Kim, Sung-Kyum;Kwon, Eun-Ju;Baik, Keun-Sik;Kim, Jung-Ho;Kim, Hoon
    • Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.268-275
    • /
    • 2007
  • Diversity of the mud flat microbial population in Suncheon Bay was investigated by studying extracellular enzyme activities and 16S rDNA sequences. Four culturable bacterial strains with CMCase, xylanase and protease activities were isolated from the wetland and the mud flat. All the strains produced more xylanase activity than CMCase or protease activity, and the properties of the isolate enzymes from the wetland were similar to those from the mud flat. About 2,000 clones were obtained with the 16S rDNA amplified from the metagenomic DNA isolated from the mud samples. Based on the restriction pattern(s), seventeen clones were selected for base sequence analysis. Of the 17 clones, only 35% (6 clones) were found to be cultured strains and 65% (11 clones) to be uncultured strains. The similarities in the base sequences of the clones ranged from 91.0% to 99.9% with an average similarity of 97.3%. The clones could be divided into 7 groups, Proteobacteria (9 clones, 52.9%), Firmicutes (3 clones, 17.6%), Bacteroidetes (1 clone), Flavobacteria (1 clone), Verrucomicrobia (1 clone), Acidobacteria (1 clone), and Chloroflexi (1 clone). Most of the Proteobacteria clones were gamma Proteobacteria associated with oxidation-reduction of sulfur.