• 제목/요약/키워드: Reducing electricity consumption

검색결과 57건 처리시간 0.025초

한국의 전력소비와 경제성장의 인과관계 분석

  • 조정환;강만옥
    • 자원ㆍ환경경제연구
    • /
    • 제21권3호
    • /
    • pp.573-593
    • /
    • 2012
  • 본 연구는 1980~2009년 동안 한국의 경제성장과 총 전력소비 및 산업별 전력소비 사이의 인과관계를 분석하였다. 이를 위해 단위근 검정을 실시하였으며 그 결과, 실질 GDP, 제1차 산업, 제조업 그리고 총 전력소비는 1차 차분형태의 안정적인 변수로 나타났다. 그러나 서비스업 전력소비는 2차 차분을 실시했을 때에 안정적인 변수로 나타났다. 공적분 검정을 실시한 결과, 실질 GDP와 총 전력소비 및 산업별 전력소비 사이에는 장기균형 관계가 존재하지 않는 것으로 분석되었다. 따라서 표준 Granger 인과관계 검정에 의하면, 경제성장이 총 전력소비, 제1차 산업 및 제조업의 전력소비에 영향을 주는 일방향 인과관계가 존재하는 것으로 나타났다. 그러나 서비스업 전력소비는 경제성장과 아무런 인과관계를 발견할 수 없었다. 이러한 인과성은 전력부문의 가격 및 비가격정책 등이 경제성장에 부정적인 영향을 최소화하면서 실행될 수 있음을 의미한다.

  • PDF

하수처리장 변압기 설치사례 연구를 통한 전력손실 저감방안 (Case Studies on the Electric Power Loss Reducing Methodology for Transformer Installation in Sewage Treatment Plant)

  • 김주영;최창규
    • 조명전기설비학회논문지
    • /
    • 제25권1호
    • /
    • pp.70-77
    • /
    • 2011
  • Sewage treatment plants, consuming 1,756[GWh] which is 0.53[%] of national wide electricity consumption, is one of the electricity consuming facilites. At the research of electricity consumption and power quality analysis on sewage treatment plants, average utilization of transformer was less than 40[%] because peak load was very lower than its capacity due to excess capacity. So reduction of power loss can be achieved by transformer design optimization. The achievement in this research, is to meet reduction of power loss through optimizing the capacity and to improve as high efficiency-low loss transformer while the transformer is operating.

A Study on Winter Season Measurement Results to cope with Dynamic Pricing for the VRF System

  • Kim, Hwan-yong;Kim, Min-seok;Lee, Je-hyeon;Song, Young-hak
    • Architectural research
    • /
    • 제17권3호
    • /
    • pp.109-115
    • /
    • 2015
  • The dynamic pricing of electricity, where the electricity rate increases in a time zone with a high demand for electricity is typically applied to a building whose power reception capacity is greater than a certain size. This includes the time of use(TOU) electricity pricing in Korea which can induce the effect of reducing the power demand of a building. Meanwhile, a VRF (Variable Refrigerant Flow) system that uses electricity is regarded as one of the typical heating and cooling systems along with central air conditioning (central HVAC) for its easy operation and application to the building. Thus, to reduce power energy and operating costs of a building in which the TOU and VRF systems are applied simultaneously, we suggested a control for changing the indoor temperature setting within the thermal comfort range or limiting the rotational speed of an inverter compressor. In this study, to describe the features of the above-mentioned control and verify its effects, we evaluated the results obtained from the analysis of its operation data. Through the actual measurements in winter operations for 73 days since mid- December 2014, we confirmed a reduction of 10.9% in power energy consumption and 12.2% in operating costs by the new control. Also, a reduction of 13.3% in power energy consumption was identified through a regression analysis.

A Cost Effective Energy Saving of Fluorescent Lighting in Commercial Buildings

  • Lee, Seong-Ryong;Nayar, Chemmangot V.
    • Journal of Power Electronics
    • /
    • 제12권1호
    • /
    • pp.215-222
    • /
    • 2012
  • Lighting represents a significant component of commercial buildings, particularly office buildings. Fluorescent lighting is invariably used in all commercial, industrial and residential areas. A significant amount of lighting energy is wasted every day by leaving the lights on and not utilizing daylight energy. However, if daylight illuminance can be harnessed, this will reduce the electricity consumption of fluorescent lamps and save energy. This paper explains possible significant savings in lighting energy consumption and hence in costs, without reducing the performance and visual satisfaction in office or industrial buildings. It is proposed to obtain energy saving by reducing the supply voltage without degradation in lighting performance. Experimental results confirm that as much as 20% of electrical energy can be saved by reducing about 9% of the supply voltage, without noticeably affecting light output while complying with lighting standard limits.

Appliance Load Profile Assessment for Automated DR Program in Residential Buildings

  • Abdurazakov, Nosirbek;Ardiansyah, Ardiansyah;Choi, Deokjai
    • 스마트미디어저널
    • /
    • 제8권4호
    • /
    • pp.72-79
    • /
    • 2019
  • The automated demand response (DR) program encourages consumers to participate in grid operation by reducing power consumption or deferring electricity usage at peak time automatically. However, successful deployment of the automated DR program sphere needs careful assessment of appliances load profile (ALP). To this end, the recent method estimates frequency, consistency, and peak time consumption parameters of the daily ALP to compute their potential score to be involved in the DR event. Nonetheless, as the daily ALP is subject to varying with respect to the DR time ALP, the existing method could lead to an inappropriate estimation; in such a case, inappropriate appliances would be selected at the automated DR operation that effected a consumer comfort level. To address this challenge, we propose a more proper method, in which all the three parameters are calculated using ALP that overlaps with DR time, not the total daily profile. Furthermore, evaluation of our method using two public residential electricity consumption data sets, i.e., REDD and REFIT, shows that our energy management systems (EMS) could properly match a DR target. A more optimal selection of appliances for the DR event achieves a power consumption decreasing target with minimum comfort level reduction. We believe that our approach could prevent the loss of both utility and consumers. It helps the successful automated DR deployment by maintaining the consumers' willingness to participate in the program.

Catalytic Oxidoreduction of Pyruvate/Lactate and Acetaldehyde/Ethanol Coupled to Electrochemical Oxidoreduction of $NAD^+$/NADH

  • Shin, In-Ho;Jeon, Sung-Jin;Park, Hyung-Soo;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.540-546
    • /
    • 2004
  • We deviced a new graphite-Mn(II) electrode and found that the modified electrode with Mn(II) can catalyze NADH oxidation and $NAD^+$ reduction coupled to electricity production and consumption as oxidizing agent and reducing power, respectively. In fuel cell with graphite-Mn(II) anode and graphite-Fe(III) cathode, the electricity of 1.5 coulomb (A x s) was produced from NADH which was electrochemically reduced by the graphite-Mn(II) electrode. When the initial concentrations of pyruvate and acetaldehyde were adjusted to 40 mM and 200 mM, respectively, about 25 mM lactate and 35 mM ethanol were produced from 40 mM pyruvate and 200 mM acetaldehyde, respectively, by catalysis of ADH and LDH in the electrochemical reactor with $NAD^+$ as cofactor and electricity as reducing power. By using this new electrode with catalytic function, the bioelectrocatalysts are engineered; namely, oxidoreductase (e.g., lactate dehydrogenase) and $NAD^+$ can function for biotransformation without electron mediator and second oxidoreductase for $NAD^+$/NADH recycling.

교류 고속철도계통에서 BESS의 도입을 위한 전력소비 및 충·방전효과 분석에 관한 연구 (Study on Analysis for Power Consumption and Charge/Discharge Effect with BESS in AC High-Speed Electric Railway System)

  • 전용주;강병욱;채희석;김재철
    • 조명전기설비학회논문지
    • /
    • 제28권9호
    • /
    • pp.20-27
    • /
    • 2014
  • The power consumption pattern of high-speed railway has rarely during night time. But, during service time, the power is consumed irregularly related to train operation. Especially certain unusual about 1-2 days of service time interval to indicate the power consumption is rapidly growing phenomenon, which causes the capacity of the power contract is the annual electricity bill to rise rapidly as the cause. Normally, amount of peak power consumption bill rate at railway substation is over 20% of total electrical bill. Therefore, high-speed railway substation is expected to be considerably larger savings by reducing the peak power of the default charge(demand power).

천연가스냉방의 경제성 분석 연구 (A Study on Economic Analysis of Natural Gas Cooling)

  • 김기호
    • 한국가스학회지
    • /
    • 제17권1호
    • /
    • pp.42-48
    • /
    • 2013
  • 한반도의 지구 온난화는 세계에서 가장 빠른 속도로 진행되고 있고, 이상기후 현상도 날로 심화되고 있다. 따라서 하절기의 혹서와 동절기의 혹한으로 인한 전력수요가 급증함에 따라 우리나라의 전력 수급상황은 매우 어려운 상황에 있다. 현재 천연가스는 현존하는 화석연료 중 온실가스 배출이 가장 적어서 공급이 확산되고 있다. 천연가스냉방은 전력피크 완화는 물론, 발전소 추가 건설비용의 절감, 천연가스 저장설비의 효율적 운영 및 분산형 전원으로서의 역할수행도 가능한 장점이 있다. 따라서 본 연구는 전력 부하관리의 대안으로서 천연가스냉방의 경제성을 분석하였다.

제조업 전력 사용 효율성 제고를 통한 온실가스(CO2) 감축 잠재량 추정에 관한 연구 (A Study on the CO2 Reduction Potential by Means of Increased Efficiency of the Electricity)

  • 민동기
    • 환경정책연구
    • /
    • 제9권3호
    • /
    • pp.143-160
    • /
    • 2010
  • 본 연구에서는 생산 기술적 측면에서 개별 사업체의 투입요소 효율성을 제고함에 따라 절약할 수 있는 전력 사용량 및 이에 따른 온실가스 감축 잠재량을 추정하였다. 이를 위하여 자료포락분석기법(DEA)를 이용하여 제조업체의 투입요소 기술적 효율성을 추정하고 이를 토대로 온실가스 저감량을 추정하였다. 2008년도 제조업체 평균 기술적 효율성은 규모에 대한 보수(Returns to Scale) 가정에 따라 0.467-0.643으로 추정되었다. 이를 토대로 제조업의 전력사용 효율성을 개선함에 따른 온실가스 절감가능량은 전력 사용에 따라 발생하는 총 온실가스 발생량의 17.1-25.5%에 해당하는 양으로 추정되었다. 우리 정부가 2020년까지 온실가스를 BAU 대비 30% 가량 감축하기로 발표하였는데 본 연구에서처럼 제조업체 투입요소의 기술적 효율성을 제고함으로써 이러한 정부 정책 실현을 가시화할 수 있을 것이다.

  • PDF

대학 내 에너지 소비에 따른 온실가스-대기오염 통합 인벤토리 및 대체 에너지 사용 시나리오 분석 (A Study of GHG-AP Integrated Inventories and Alternative Energy Use Scenario of Energy Consumption in the University)

  • 정재형;권오열
    • 한국환경과학회지
    • /
    • 제23권9호
    • /
    • pp.1643-1654
    • /
    • 2014
  • The university is one of the main energy consumption facilities and thereby releases a large amount of greenhouse gas (GHG). Accordingly, efforts for reducing energy consumption and GHG have been established in many local as well as international universities. However, it has been limited to energy consumption and GHG, and has not included air pollution (AP). Therefore, we estimated GHG and AP integrated emissions from the energy consumed by Seoul National University of Science and Technology during the years between 2010 and 2012. In addition, the effect of alternative energy use scenario was analysed. We estimated GHG using IPCC guideline and Guidelines for Local Government Greenhouse Inventories, and AP using APEMEP/EEA Emission Inventory Guidebook 2013 and Air Pollutants Calculation Manual. The estimated annual average GHG emission was $11,420tonCO_{2eq}$, of which 27% was direct emissions from fuel combustion sectors, including stationary and mobile source, and the remaining 73% was indirect emissions from purchased electricity and purchased water supply. The estimated annual average AP emission was 7,757 kgAP, of which the total amount was from direct emissions only. The annual GHG emissions from city gas and purchased electricity usage per unit area ($m^2$) of the university buildings were estimated as $15.4kgCO_{2eq}/m^2$ and $42.4tonCO_{2eq}/m^2$ and those per person enrolled in the university were $210kgCO_{2eq}$/capita and $577kgCO_{2eq}$/capita. Alternative energy use scenarios revealed that the use of all alternative energy sources including solar energy, electric car and rain water reuse applicable to the university could reduce as much as 9.4% of the annual GHG and 34% of AP integrated emissions, saving approximately 400 million won per year, corresponding to 14% of the university energy budget.