• 제목/요약/키워드: Reduced Reaction Mechanism

검색결과 204건 처리시간 0.028초

디메틸 에테르 착화에 관한 반응기구 축소 연구 (A Study on the Reduction of Reaction Mechanism for the Ignition of Dimethyl Ether)

  • 류봉우;박성욱;이창식
    • 대한기계학회논문집B
    • /
    • 제35권1호
    • /
    • pp.75-82
    • /
    • 2011
  • 디젤의 대체연료인 디메틸 에테르의 반응기구 축소에 관한 수치해석을 수행하였다. 상세반응기구(79 개의 화학종과 351 개의 반응단계)를 기초로, 최대몰농도 해석과 민감도 해석을 균질 반응기 모델에 적용하였다. 축소반응기구는 상세반응기구의 착화지연기간과 비교하여 구축하였는데, 기준값으로 $7.5{\times}10^{-5}$을 적용했을 때 44 개의 화학종과 166 개의 반응단계로 구성된다. 축소반응기구의 계산 정확도를 검증하기 위하여 두 반응기구를 단일영역 균일예혼합 압축착화 엔진모델에 적용하였고, 축소반응기구의 계산결과는 상세반응기구의 결과와 일치하였다. 따라서 본 연구의 축소반응기구는 계산의 정확도의 손실 없이 DME 를 연료로 사용하는 압축착화엔진의 착화 및 연소 과정을 모사하는데 이용될 수 있다.

Dimethyl Ether-Air 예혼합화염의 축소 반응 메카니즘 개발 (The Development of the Short Mechanism for Premixed Dimethyl Ether-Air Flames)

  • 이기용;이수각
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.211-214
    • /
    • 2012
  • A short reaction mechanism was developed in order to predict the flame phenomena in premixed Dimethyl Ether-Air flame with the methods of SEM-CM(Simulation Error Minimization Connectivity Method), sensitivity analysis, and the rate of production analysis. It consisted of 31 species including nitrogen as inert gas and 177 elementary reactions. The flame structures obtained using a detailed reaction mechanism and the short reaction mechanism were compared with various equivalence ratios and pressure, and the results were in good agreement. Therefore, the short reaction mechanism would be used to aim at studying the development of a reduced reaction mechanism.

  • PDF

Catalytic mechanism and inhibition studies of purine nucleoside phosphorylase (PNP) in micrococcus luteus

  • Choi, Hye-Seon
    • Journal of Microbiology
    • /
    • 제35권1호
    • /
    • pp.15-20
    • /
    • 1997
  • Kinetic studies were done to elucidate the reaction mechanism of purine nucleoside phosphorylase (PNP) in Micrococcus Luteus. PNP catalyzes the reversible phosphorolysis of ribonucleosides to their respective base. The effect of alternative competing substrates suggested that a single enzyme was involved in binding to the active site for all purine nucleosides, inosine, deoxyiosine, guanosine, deoxyguanosine, adenosine and deoxyadenosine. Affinity studies showed that pentose moiety reduced the binding capacity and methylation of ring N-1 of inosine and guanosine had little effect on binding to bacterial enzyme, whereas these compounds did not bind to the mammalian enzymes. The initial velocity and product inhibition studies demonstrated that the predominant mechanism of reaction was an ordered bi, bi reaction. The nucleoside bound to the enzyme first, followed by phosphate. Ribose 1-phosphate was the first product to leave, followed by base.

  • PDF

천연가스 예혼합화염의 연소특성 및 축소반응메커니즘에 관한 연구 (Studies on Combustion Characteristics and Reduced Kinetic Mechanisms of Natural Gas Premixed Flames)

  • 이수룡;김홍집;정석호
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.166-177
    • /
    • 1998
  • Combustion characteristics of natural gas premixed flames is studied experimently and numerically by adopting a counterflow as a flamelet model in turbulent flames. Flame speeds are measured by employing LDV, and the results show that flame speed increases linearly with strain rate, which agrees well with numerical results. Parametric dependences of extinction strain rates are studied numerically with detailed kinetic mechanism to show that the addition of ethand to a methane premixed flame makes the flame more resistant to strain rate. The effect of pressure on the extinction strain rate is that the extinction strain rate increases up to 10 atm and them decreases, which is explained by competition of chain branching H+O2=OH+O and recombination reaction H+O2+M=HO2+M. Detailed mechanism having seventy-four step is systematically reduced to a nine-step and a five-step thermal NOx chemistry is reduced to two-step. Comparison between the results of the detailed and the reduced mechanisms demonstrates that the reduced mechanism successfully describes the essential features of natural gas premixed flames including extinction strain rate and NOx production.

  • PDF

PROTEIN-CROSS-LINKING BY METHYLGLYOXAL

  • Lee, Cheolju;Kang, Sa-Ouk
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1996년도 정기총회 및 학술발표회
    • /
    • pp.46-46
    • /
    • 1996
  • To elucidate the mechanism for the cross-linking reaction in the glycation or Maillard reaction, we studied the reaction between proteins, and a three-carbon ${\alpha}$-ketoaldehyde, methylglyoxal. When Cu, Zn-SOD was incubated with 200 mM of methylglyoxal, the peroxidase activity as well as the superoxide dismutase activity was reduced. This reduction is accompanied by the decrease of the anion binding affinity of the enzyme. (omitted)

  • PDF

UVB 조사에 의한 페플록사신의 광독성 유발 기전 (Phototoxic Potential Mechanism of Pefloxacin Irradiated by UVB)

  • 최윤수;이경선
    • 약학회지
    • /
    • 제43권6호
    • /
    • pp.703-708
    • /
    • 1999
  • The effect of antioxidants on photochemical reaction of pefloxacin by UVB (290~320 nm) was investigated and the possible mechanism of phototoxicity on the skin was also studied. The photo-degradation of pefloxacin by UVB was suppressed by cysteine, reduced glutathione and ascorbic acid, but was promoted by ${\alpha}-tocopherol$. Squalene, accounts for more than 10% of skin surface lipids, was peroxidized by pefloxacin through both radical and singlet oxygen mechanism.

  • PDF

Feasibility of a methane reduced chemical kinetics mechanism in laminar flame velocity of hydrogen enriched methane flames simulations

  • Ennetta, Ridha;Yahya, Ali;Said, Rachid
    • Advances in Energy Research
    • /
    • 제4권3호
    • /
    • pp.213-221
    • /
    • 2016
  • The main purpose of this work is to test the validation of use of a four step reaction mechanism to simulate the laminar speed of hydrogen enriched methane flame. The laminar velocities of hydrogen-methane-air mixtures are very important in designing and predicting the progress of combustion and performance of combustion systems where hydrogen is used as fuel. In this work, laminar flame velocities of different composition of hydrogen-methane-air mixtures (from 0% to 40% hydrogen) have been calculated for variable equivalence ratios (from 0.5 to 1.5) using the flame propagation module (FSC) of the chemical kinetics software Chemkin 4.02. Our results were tested against an extended database of laminar flame speed measurements from the literature and good agreements were obtained especially for fuel lean and stoichiometric mixtures for the whole range of hydrogen blends. However, in the case of fuel rich mixtures, a slight overprediction (about 10%) is observed. Note that this overprediction decreases significantly with increasing hydrogen content. This research demonstrates that reduced chemical kinetics mechanisms can well reproduce the laminar burning velocity of methane-hydrogen-air mixtures at lean and stoichiometric mixture flame for hydrogen content in the fuel up to 40%. The use of such reduced mechanisms in complex combustion device can reduce the available computational resources and cost because the number of species is reduced.

셀레늄을 활용한 니켈철 (옥시)수산화물의 격자 산소 활성화 (Lattice Oxygen Activation in NiFe (Oxy)hydroxide using Se)

  • 조승환;손정인
    • 한국재료학회지
    • /
    • 제32권8호
    • /
    • pp.339-344
    • /
    • 2022
  • The lattice oxygen mechanism (LOM) is considered one of the promising approaches to overcome the sluggish oxygen evolution reaction (OER), bypassing -OOH* coordination with a high energetic barrier. Activated lattice oxygen can participate in the OER as a reactant and enables O*-O* coupling for direct O2 formation. However, such reaction kinetics inevitably include the generation of oxygen vacancies, which leads to structural degradation, and eventually shortens the lifetime of catalysts. Here, we demonstrate that Se incorporation significantly enhances OER performance and the stability of NiFe (oxy)hydroxide (NiFe) which follows the LOM pathway. In Se introduced NiFe (NiFeSe), Se forms not only metal-Se bonding but also Se-oxygen bonding by replacing oxygen sites and metal sites, respectively. As a result, transition metals show reduced valence states while oxygen shows less reduced valence states (O-/O22-) which is a clear evidence of lattice oxygen activation. By virtue of its electronic structure modulation, NiFeSe shows enhanced OER activity and long-term stability with robust active lattice oxygen compared to NiFe.

윤활시스템에서 마모메카니즘에 미치는 물리화학적 영향에 관한 연구(II) (A Study on the Effect of physico-chemical Factors in Wear Mechanism in a Lubricated Concentrated Contact (II))

  • 최웅수;권오관;문탁진;유영흥
    • Tribology and Lubricants
    • /
    • 제4권1호
    • /
    • pp.43-55
    • /
    • 1988
  • A Study on the effect of the additives in lubricating oil was investigated on the basis of the thermal activated wear theory in terms of their wear behaviours, using four ballwear machine. The sample oils, which included diethyl-3, 5-di-t-butyi-4-hydroxy-benzyl phosphonate (DEP), ZDDP and TCP additives respectively, showed distinct wear characteristics depending upon the bulk oil temperature and the sliding velocity. The newly synthesized additive, viz., DEP showed excellent antiwear performance cornpared with the conventional additives, ZDDP and TCP. On the basis of the experimental results, it is reduced that the wear mechanism of the conventional additives, viz., ZDDP and TCP is the protective film formation and their antiwear capability is depending upon the shearing strength of the film formed. On the other hand, the new additive, DEP showed that the secondary activation energy was much eliminated and so, the thermal instability was reduced by the hydrogen scavenging reaction of the new additive, which was virtually an endothermic reaction process.In conclusion, a new concept of antiwear mechanism is estabilished and testified. And new chemical, which showed the function of hydrogen and free radical scavenging role, is synthesized and introduced as the new, highly antiwear effective lubricating oil additive.

유연한 기구의 틈새관절 모델링 및 해석방법에 관한 연구 (Dynamic Modeling and Analysis of Flexible Mechanism With Joint Clearance)

  • 홍지수;김호룡
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3109-3117
    • /
    • 1994
  • To operate a flexible mechanism in high speed its weight must be reduced as far as the structural strength does not decrease too much, but a light-weighted mechanism causes undesirable elastodynamic responses deteriorating the system performance. Besides, clearance within the connections of mechanisms causes rapid wear, increased noise and vibration. Even if the problems described above must be considered in the initial design stage, there has been no effective design process which takes account of the correlation between dynamic characteristics of flexible mechanism and the clearance effect at the joint. In this study, the generalized elastodynamic governing equations which include dynamic characteristics and boundary conditions of flexible mechanism are derived by variational calculus and solved by using FFM theory. To take the clearance effect at joint into account a new dynamic model is presented and also the method of modified stiffness/damping matrix is proposed to activate the dynamic clearance model, which cooperates with the developed governing equation very easily. As the results of this study, the proposed method(modified stiffness/damping matrix) to calculate clearance effect was proved to be superior to the existing one(force reaction method) in solution convergency and calculation performance. Besides this method can be easily adopted to the complex shape joint without calculation of reaction force direction.