• Title/Summary/Keyword: Reduced Graphene Oxide

Search Result 152, Processing Time 0.02 seconds

Characterization of few-layered reduced graphene oxide (rGO) for standardization (소수의 층을 갖는 환원 graphene oxide(rGO) 표준화를 위한 물성분석)

  • Ahn, Hae Jun;Huh, Seung Hun;Jee, Youngho;Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.6
    • /
    • pp.239-245
    • /
    • 2022
  • Reduced graphene oxide (rGO) has attracted many attention and applications due to its excellent electrochemical ability. Therefore, standardization of rGO through structural and thermal analysis facilitates quality improvement and management, enabling users to increase efficiency and reduce relevant costs. For rGO and graphene-related materials, it is very important to determine the number of layers and define the resulting difference in physical properties. In this study, 3~4 layers of rGO-1 and 9~10 layers of rGO-2 were obtained from graphene oxide (GO) through a hydrazine reduction process. For the prepared rGOs, X-ray diffraction (XRD) pattern obtained a diffraction peak at 2θ≈25° related to (002) reflection was used to calculate the layer numbers by determining interlayer distance and FWHM value. To reduce the angular uncertainty, XRD data analysis was performed with angle correction using standard reference materials for X-ray powder diffraction analysis. Precise interlayer distance and number of layers were determined using OriginLab and open-source XRD diffraction analysis programs using the angle-corrected diffraction data. TG-DSC thermal analysis was performed to further standardize the physical properties of rGO samples.

Synthesis and characterization of polybenzoxazole/graphene oxide composites via in situ polymerization

  • Lim, Jun;Kim, Min-Cheol;Goh, Munju;Yeo, Hyeounk;Shin, Dong Geun;Ku, Bon-Cheol;You, Nam-Ho
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.251-254
    • /
    • 2013
  • In this study, poly(amic acid) was prepared via a polycondensation reaction of 3,3'-dihydroxybenzidine and pyromellitic dianhydride in an N-methyl-2-pyrrolidone solution; reduced graphene oxide/polybenzoxazole (r-GO/PBO) composite films, which significantly increased the electrical conductivity, were successfully fabricated. GO was prepared from graphite using Brodie's method. The GO was used as nanofillers for the preparation of r-GO/PBO composites through an in situ polymerization. The addition of 50 wt% GO led to a significant increase in the electrical conductivity of the composite films by more than sixteen orders of magnitude compared with that of pure PBO films as a result of the electrical percolation networks in the r-GO during the thermal treatment at various temperatures within the films.

High-performance of Flexible Supercapacitor Cable Based on Microwave-activated 3D Porous Graphene/Carbon Thread (마이크로웨이브 활성화 3차원 다공성 그래핀/탄소실 기반의 고성능 플렉서블 슈퍼커패시터 케이블)

  • Park, Seung Hwa;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.23-28
    • /
    • 2019
  • We report a supercapacitor cable, which consists of three-dimensional (3D) porous graphene coated onto the surface of carbon thread. The 3D porous framework of graphene was constructed by microwave-activated process using a graphene oxide-coated carbon thread. The use of microwave irradiation enabled to convert graphene oxide into reduced graphene oxide without any reducing agents and activate graphene sheets into exfoliated and porous graphene sheets. Combining two wire electrodes with a polymer gel electrolyte successfully completed supercapacitor device in a form of cable construction. The supercapacitor cables were highly flexible, and thus can be transformed into various shapes of devices and be integrated into textile items. A high area-capacitance of 38.1 mF/cm was obtained at a scan rate of 10 mV/s. This capacitance was retained 88% of its original value at 500 mV/s. The cycle life was also demonstrated by repeating a charge/discharge process during 10,000 cycles even under bent states, showing a high capacitance retention of 96.5%.

Synthesis of Reduced Graphene-metal Hybrid Materials via Ion-exchange Method and its Characterization (이온교환법에 의한 환원 그래핀-금속 하이브리드 소재의 합성 및 특성)

  • Park, Aeri;Kim, Sumin;Kim, Hyun;Han, Jong Hun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.25-37
    • /
    • 2020
  • In this study, hybridization of graphene oxide and metal was carried out by the functional groups containing oxygen and thermal treatment for reduction in order to enhance the electrical conductivity and magnetic properties of graphene materials. Graphene-metal hybrid materials were synthesized using the oxygen-containing functional groups (-OH, -COOH and so on) on the surface of graphene oxide by replacing them with metal ions via ion exchange method as well as thermal reduction. The metals used in this study were Fe, Ag, Ni, Zn, and Fe/Ag, and it was confirmed that metal particles of uniform size were well dispersed on the graphene surface through SEM, TEM, and EDS. All of the metal particles on the graphene surface had an oxide-crystalline structure. To check the electrical properties, sheet resistance of the rGO-metal hybrid sample was measured on the PET film made by the dip-coating, and the specific resistance was calculated by measuring the thickness of the specimen through SEM. As a result, the specific resistance was in the range of 2.14×10-5 and 3.5×10-3 ohm/cm.

Electrical Conductivity of Chemically Reduced Graphene Powders under Compression

  • Rani, Adila;Nam, Seung-Woong;Oh, Kyoung-Ah;Park, Min
    • Carbon letters
    • /
    • v.11 no.2
    • /
    • pp.90-95
    • /
    • 2010
  • Carbon materials such as graphite and graphene exhibit high electrical conductivity. We examined the electrical conductivity of synthetic and natural graphene powders after the chemical reduction of synthetic and natural graphite oxide from synthetic and natural graphite. The trend of electrical conductivity of both graphene (synthetic and natural) was compared with different graphite materials (synthetic, natural, and expanded) and carbon nanotubes (CNTs) under compression from 0.3 to 60 MPa. We found that synthetic graphene showed a marked increment in electrical conductivity compared to natural graphene. Interestingly, the total increment in electrical conductivity was greater for denser graphite; however, an opposite behavior was observed in nanocarbon materials such as graphene and CNTs, probably due to the differing layer arrangement of nanocarbon materials.

Tunable Nanostructure of TiO2/Reduced Graphene Oxide Composite for High Photocatalysis

  • He, Di;Li, Yongli;Wang, Jinshu;Yang, Yilong;An, Qier
    • Applied Microscopy
    • /
    • v.46 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • In this study $TiO_2$/reduced graphene oxide ($TiO_2/rGO$) bipyramid with tunable nanostructure was fabricated by two-step solvothermal process and subsequent heat-treatment in air. The as-synthesized anatase $TiO_2$ nanocrystals possessed morphological bipyramid with exposed dominantly by (101) facets. Polyethylenimine was utilized during the combination of $TiO_2$ and graphene oxide (GO) to tune the surface charge, hindering the restack of graphene during solvothermal process and resulting in 1 to 5 layers of rGO wrapped on $TiO_2$ surface. After a further calcination, a portion of carbon quantum dots (CQDs) with a diameter about 2 nm were produced owing to the oxidizing and cutting of rGO on $TiO_2$. The as-prepared $TiO_2/rGO$ hybrid showed a highly photocatalytic activity, which is about 3.2 and 7.7 times enhancement for photodegradation of methyl orange with compared to pure $TiO_2$ and P25, respectively. We assume that the improvement of photocatalysis is attributed to the chemical bonding between rGO/CQDs and $TiO_2$ that accelerates photogenerated electron-hole pair separation, as well as enhances light harvest.

Comparative study on the morphological properties of graphene nanoplatelets prepared by an oxidative and non-oxidative route

  • An, Jung-Chul;Lee, Eun Jung;Yoon, So-Young;Lee, Seong-Young;Kim, Yong-Jung
    • Carbon letters
    • /
    • v.26
    • /
    • pp.81-87
    • /
    • 2018
  • Morphological differences in multi-layered graphene flakes or graphene nanoplatelets prepared by oxidative (rGO-NP, reduced graphene oxide-nanoplatelets) and non-oxidative (GIC-NP, graphite intercalation compound-nanoplatelets) routes were investigated with various analytical methods. Both types of NPs have similar specific surface areas but very different structural differences. Therefore, this study proposes an effective and simple method to identify structural differences in graphene-like allotropes. The adsorptive potential peaks of rGO-NP attained by the density functional theory method were found to be more scattered over the basal and non-basal regions than those of GIC-NP. Raman spectra and high resolution TEM images showed more distinctive crystallographic defects in the rGO-NP than in the GIC-NP. Because the R-ratio values of the edge and basal plane of the sample were maintained and relatively similar in the rGO-NP (0.944 for edge & 1.026 for basal), the discrepancy between those values in the GIC-NP were found to be much greater (0.918 for edge & 0.164 for basal). The electrical conductivity results showed a remarkable gap between the rGO-NP and GIC-NP attributed to their inherent morphological and crystallographic properties.

Facile Fabrication of Flexible In-Plane Graphene Micro-Supercapacitor via Flash Reduction

  • Kang, Seok Hun;Kim, In Gyoo;Kim, Bit-Na;Sul, Ji Hwan;Kim, Young Sun;You, In-Kyu
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.275-282
    • /
    • 2018
  • Flash reduction of graphene oxide is an efficient method for producing high quality reduced graphene oxide under room temperature ambient conditions without the use of hazardous reducing agents (such as hydrazine and hydrogen iodide). The entire process is fast, low-cost, and suitable for large-scale fabrication, which makes it an attractive process for industrial manufacturing. Herein, we present a simple fabrication method for a flexible in-plane graphene micro-supercapacitor using flash light irradiation. All carbon-based, monolithic supercapacitors with in-plane geometry can be fabricated with simple flash irradiation, which occurs in only a few milliseconds. The thinness of the fabricated device makes it highly flexible and thus useful for a variety of applications, including portable and wearable electronics. The rapid flash reduction process creates a porous graphene structure with high surface area and good electrical conductivity, which ultimately results in high specific capacitance ($36.90mF\;cm^{-2}$) and good cyclic stability up to 8,000 cycles.

Sorption behavior of slightly reduced, three-dimensionally macroporous graphene oxides for physical loading of oils and organic solvents

  • Park, Ho Seok;Kang, Sung Oong
    • Carbon letters
    • /
    • v.18
    • /
    • pp.24-29
    • /
    • 2016
  • High pollutant-loading capacities (up to 319 times its own weight) are achieved by three-dimensional (3D) macroporous, slightly reduced graphene oxide (srGO) sorbents, which are prepared through ice-templating and consecutive thermal reduction. The reduction of the srGO is readily controlled by heating time under a mild condition (at 1 10−2 Torr and 200℃). The saturated sorption capacity of the hydrophilic srGO sorbent (thermally reduced for 1 h) could not be improved further even though the samples were reduced for 10 h to achieve the hydrophobic surface. The large meso- and macroporosity of the srGO sorbent, which is achieved by removing the residual water and the hydroxyl groups, is crucial for achieving the enhanced capacity. In particular, a systematic study on absorption parameters indicates that the open porosity of the 3D srGO sorbents significantly contributes to the physical loading of oils and organic solvents on the hydrophilic surface. Therefore, this study provides insight into the absorption behavior of highly macroporous graphene-based macrostructures and hence paves the way to development of promising next-generation sorbents for removal of oils and organic solvent pollutants.

Enhanced electrocapacitive performance and high power density of polypyrrole/graphene oxide nanocomposites prepared at reduced temperature

  • Mudila, Harish;Joshi, Varsha;Rana, Sweta;Zaidi, Mohmd. Ghulam Haider;Alam, Sarfaraz
    • Carbon letters
    • /
    • v.15 no.3
    • /
    • pp.171-179
    • /
    • 2014
  • An attempt was made to investigate the effect of the preparation temperature on the electrocapacitive performance of polypyrrole (PPY)/graphene oxide (GO) nanocomposites (PNCs). For this purpose, a series of PNCs were prepared at various temperatures by the cetyltrimethylammonium bromide-assisted dilute-solution polymerization of pyrrole in presence of GO (wt%) ranging from 1.0 to 4.0 with ferric chloride as an oxidant. The formation of the PNCs was ascertained through Fourier-transform infrared spectrometry, X-ray diffraction spectra, scanning electron microscopy and simultaneous thermogravimetric-differential scanning calorimetry. The electrocapacitive performance of the electrodes derived from sulphonated polysulphone-bound PNCs was evaluated through cyclic voltammetry with reference to Ag/AgCl at a scan rate (V/s) ranging from 0.2 and 0.001 in potassium hydroxide (1.0 M). The incorporation of GO into the PPY matrix at a reduced temperature has a pronounced effect on the electrocapacitive performance of PNCs. Under identical scan rates (0.001 V/s), PNCs prepared at $10{\pm}1^{\circ}C$ render improved specific conductivity (526.33 F/g) and power density (731.19 W/Kg) values compared to those prepared at $30{\pm}1^{\circ}C$ (217.69 F/g, 279.43 W/Kg). PNCs prepared at $10{\pm}1^{\circ}C$ rendered a capacitive retention rate of ~96% during the first 500 cycles. This indicates the excellent cyclic stability of the PNCs prepared at reduced temperatures for supercapacitor applications.