• 제목/요약/키워드: Reduced

검색결과 48,209건 처리시간 0.059초

Reaction of Sodium Diethyldihydroaluminate with Selected Organic Compounds Containing Representative Functional Groups

  • Yoon Nung Min;Shon Young Seok;Ahn Jin Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권2호
    • /
    • pp.199-207
    • /
    • 1992
  • The approximate rates and stoichiometry of the reaction of excess sodium diethyldihydroaluminate (SDDA) with 68 selected organic compounds containing representative functional groups were examined under standard conditions (THF-toluene, $0^{\circ}C$ in order to compare its reducing characteristics with lithium aluminum hydride (LAH), aluminum hydride, and diisobutylaluminum hydride (DIBAH) previously examined, and enlarge the scope of its applicability as a reducing agent. Alcohols, phenol, thiols and amines evolve hydrogen rapidly and quantitatively. Aldehydes and ketones of diverse structure are reduced rapidly to the corresponding alcohols. Reduction of norcamphor gives 11% exo-and 89% endo-norborneol. Conjugated aldehydes such as cinnamaldehyde are rapidly and cleanly reduced to the corresponding allylic alcohols. p-Benzoquinone is mainly reduced to hydroquinone. Hexanoic acid and benzoic acid liberate hydrogen rapidly and quantitatively, however reduction proceeds very slowly. Acid chlorides and esters tested are all reduced rapidly to the corresponding alcohols. However cyclic acid anhydrides such as succinic anhydride are reduced to the lactone stage rapidly, but very slowly thereafter. Although alkyl chlorides are reduced very slowly alkyl bromides, alkyl iodides and epoxides are reduced rapidly with an uptake of 1 equiv of hydride. Styrene oxide is reduced to give 1-phenylethanol quantitatively. Primary amides are reduced very slowly; however, tertiary amides take up 1 equiv of hydride rapidly. Tertiary amides could be reduced to the corresponding aldehydes in very good yield ( > 90%) by reacting with equimolar SDDA at room temperature. Hexanenitrile is reduced moderately accompanying 0.6 equiv of hydrogen evolution, however the reduction of benzonitrile proceeds rapidly to the imine stage and very slowly thereafter. Benzonitrile was reduced to give 90% yield of benzaldehyde by reaction with 1.1 equiv of hydride. Nitro compounds, azobenzene and azoxybenzene are reduced moderately at $0^{\circ}C$, but nitrobenzene is rapidly reduced to hydrazobenzene stage at room temperature. Cyclohexanone oxime is reduced to the hydroxylamine stage in 12 h and no further reaction is apparent. Pyridine is reduced sluggishly at $0^{\circ}C$, but moderately at room temperature to 1,2-dihydropyridine stage in 6 h; however further reaction is very slow. Disulfides and sulfoxides are reduced rapidly, whereas sulfide, sulfone, sulfonic acid and sulfonate are inert under these reaction conditions.

축소시스템 기반 비행체 날개 최적화 연구 (Wing Optimization based on a Reduced System)

  • 김현기;최인호
    • 한국산학기술학회논문지
    • /
    • 제13권10호
    • /
    • pp.4411-4417
    • /
    • 2012
  • 본 연구에서는 축소모델을 기반으로 비행체 날개를 최적화하는 기법을 제안한다. 잘 구축된 축소모델은 고유치 문제나 동적 해석 시 정확한 해석결과를 제공하며, 최적화 과정에서 필요한 민감도 계산에서도 정확한 결과를 제공할 수 있다. 이러한 축소모델은 모드기반으로 구축되는 축소차수모델(Reduce Order Model)과 자유도기반으로 구축되는 축소시스템(Reduced System)으로 구분되는데, 본 연구에서 사용하는 자유도 기반 축소시스템은 구조물의 거동에 지배적인 자유도를 적절히 선정하는 것이 중요하므로, 이를 위하여 기존 연구에서 신뢰성이 검증된 2단계 축소방법을 사용하였고, IRS(Improved Reduced System)에 의해 최종시스템을 구축하였다. 수치예제에서 최적화 과정에서 계산되는 등가응력, 고유치 및 설계민감도는 모두 축소시스템 기반으로 구해지며, 축소시스템을 통해 구속조건을 잘 만족하면서 목적함수에 대한 최적 결과를 얻을 수 있음을 보인다.

Centroidal Voronoi Tessellation-Based Reduced-Order Modeling of Navier-Stokes Equations

  • 이형천
    • 한국전산응용수학회:학술대회논문집
    • /
    • 한국전산응용수학회 2003년도 KSCAM 학술발표회 프로그램 및 초록집
    • /
    • pp.1-1
    • /
    • 2003
  • In this talk, a reduced-order modeling methodology based on centroidal Voronoi tessellations (CVT's)is introduced. CVT's are special Voronoi tessellations for which the generators of the Voronoi diagram are also the centers of mass (means) of the corresponding Voronoi cells. The discrete data sets, CVT's are closely related to the h-means clustering techniques. Even with the use of good mesh generators, discretization schemes, and solution algorithms, the computational simulation of complex, turbulent, or chaotic systems still remains a formidable endeavor. For example, typical finite element codes may require many thousands of degrees of freedom for the accurate simulation of fluid flows. The situation is even worse for optimization problems for which multiple solutions of the complex state system are usually required or in feedback control problems for which real-time solutions of the complex state system are needed. There hava been many studies devoted to the development, testing, and use of reduced-order models for complex systems such as unsteady fluid flows. The types of reduced-ordered models that we study are those attempt to determine accurate approximate solutions of a complex system using very few degrees of freedom. To do so, such models have to use basis functions that are in some way intimately connected to the problem being approximated. Once a very low-dimensional reduced basis has been determined, one can employ it to solve the complex system by applying, e.g., a Galerkin method. In general, reduced bases are globally supported so that the discrete systems are dense; however, if the reduced basis is of very low dimension, one does not care about the lack of sparsity in the discrete system. A discussion of reduced-ordering modeling for complex systems such as fluid flows is given to provide a context for the application of reduced-order bases. Then, detailed descriptions of CVT-based reduced-order bases and how they can be constructed of complex systems are given. Subsequently, some concrete incompressible flow examples are used to illustrate the construction and use of CVT-based reduced-order bases. The CVT-based reduced-order modeling methodology is shown to be effective for these examples and is also shown to be inexpensive to apply compared to other reduced-order methods.

  • PDF

Reducing Characteristics of Potassium Tri-sec-butylborohydride

  • Yoon, Nung-Min;Hwang, Young-Soo;Yang, Ho-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • 제10권4호
    • /
    • pp.382-388
    • /
    • 1989
  • The approximate rates and stoichiometry of the reaction of excess potassium tri-sec-butylborohydride ($K_s-Bu_3BH$) with selected organic compounds containing representative functional groups were determined under the standard conditions (0$^{\circ}C$, THF) in order to define the characteristics of the reagent for selective reductions. Primary alcohols evolve hydrogen in 1 h, but secondary and tertiary alcohols and amines are inert to this reagent. On the other hand, phenols and thiols evolve hydrogen rapidly. Aldehydes and ketones are reduced rapidly and quantitatively to the corresponding alcohols. Reduction of norcamphor gives 99.3% endo- and 0.7% exo-isomer of norboneols. The reagent rapidly reduces cinnamaldehyde to the cinamyl alcohol stage and shows no further uptake of hydride. p-Benzoquinone takes up one hydride rapidly with 0.32 equiv hydrogen evolution and anthraquinone is cleanly reduced to the 9,10-dihydoxyanthracene stage. Carboxylic acids liberate hydrogen rapidly and quantitatively, however further reduction does not occur. Anhydrides utilize 2 equiv of hydride and acyl chlorides are reduced to the corresponding alcohols rapidly. Lactones are reduced to the diol stage rapidly, whereas esters are reduced moderately (3-6 h). Terminal epoxides are rapidly reduced to the more substituted alcohols, but internal epoxides are reduced slowly. Primary and tertiary amides are inert to this reagent and nitriles are reduced very slowly. 1-Nitropropane evolves hydrogen rapidly without reduction and nitrobenzene is reduced to the azoxybenzene stage, whereas azobenzene and azoxybenzene are inert. Cyclohexanone oxime evolves hydrogen without reduction. Phenyl isocyanate utilizes 1 equiv of hydride to proceed to formanilide stage. Pyridine and quinoline are reduced slowly, however pyridine N-oxide takes up 1.5 equiv of hydride in 1 hr. Disulfides are rapidly reduced to the thiol stage, whereas sulfide, sulfoxide, sulfonic acid and sulfone are practically inert to this reagent. Primary alkyl bromide and iodide are reduced rapidly, but primary alkyl chloride, cyclohexyl bromide and cyclohexyl tosylate are reduced slowly.

대정제법에 의한 전자재료용 indium정제에 관한 연구 (A study on the indium purification for electronic materials by zone refining)

  • 김백년;김선태;송복식;문동찬
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제7권2호
    • /
    • pp.130-137
    • /
    • 1994
  • Indium, element of group III, was refined by using zone refining for high purity refinement. We have found the impurities of T1, Zn, Fe, Cd, Pb, Ni, Cu, Sn in the refined indium with ICP-AES, so that 3.9 weight ppm of T1 was reduced to less than 1 ppm, 1.0 weight ppm of Zn was reduced to 0.7 ppm, 2.8 weight ppm of Cd was reduced to 2.5 ppm and 14.0 weight ppm of Sn was reduced to 6.7 ppm with 5 melten zone passes only. 3.9 weight ppm of T1 was reduced to less than 1 ppm, 1.0 weight ppm of Zn was reduced to 0.3 ppm, 2.8 weight ppm of Cd was reduced to less than 1.0 ppm and 14.0 weight ppm of Sn was reduced to 0.4 ppm after vacuum baking with 5 melten zone passes. The surface morpholgy of metal Indium thin film in each conditions showed that porosities were reduced in the front of sampled ingot after vacuum baking with 5 zone melten zone passes. The average electrical resistivity of Indium thin film was reduced from 1.4*10$^{-3}$ .ohm.-cm in Indium origin ingot to 7.9*10$^{-6}$ .ohm.-cm after zone refined with 5 melten zone passes.

  • PDF

나트륨 저감 제품에 대한 태도, 수용도 및 나트륨 인지가 나트륨 저감 식품 구매의도에 미치는 영향 - 식품전문가를 중심으로 - (The Attitude towards, and Acceptance of Sodium-Reduced Products, and the Influences that Recognition of Sodium give to the Purchasing Intention of Sodium-Reduced Products - Focused on the Food Specialist -)

  • 이보나;김진우
    • 한국식품영양학회지
    • /
    • 제29권1호
    • /
    • pp.52-57
    • /
    • 2016
  • This research study aimed to examine the seriousness related to sodium over intakes that is becoming a global issue, evaluate how the recognition of sodium-reduced products and its acceptance can influence the intention of purchasing sodium-reduced products, and generate basic data for establishment of marketing strategy of campaigns such as reducing sodium intake and commercialization of sodium-reduced products. According to the results of the research, the acceptance of sodium-reduced products significantly influenced the purchasing intention of sodium-reduced products, while the attitude towards sodium and recognition of sodium did not significantly influence the purchasing intention of sodium-reduced products. Extension of these research findings to ordinary people and the analysis of main causes that affect the recognition of sodium-reduced products and purchasing intention provide a solid basis for efficient sodium-reduction publicity and development of directions for campaigns.

Toxicity Evaluation of Complex Metal Mixtures Using Reduced Metal Concentrations: Application to Iron Oxidation by Acidithiobacillus ferrooxidans

  • Cho, Kyung-Suk;Ryu, Hee-Wook;Choi, Hyung-Min
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권7호
    • /
    • pp.1298-1307
    • /
    • 2008
  • In this study, we investigated the inhibition effects of single and mixed heavy metal ions ($Zn^{2+},\;Ni^{2+},\;Cu^{2+},\;and\;Cd^{2+}$) on iron oxidation by Acidithiobacillus ferrooxidans. Effects of metals on the iron oxidation activity of A. ferrooxidans are categorized into four types of patterns according to its oxidation behavior. The results indicated that the inhibition effects of the metals on the iron oxidation activity were noncompetitive inhibitions. We proposed a reduced inhibition model, along with the reduced inhibition constant ($\alpha_i$), which was derived from the inhibition constant ($K_I$) of individual metals and represented the tolerance of a given inhibitor relative to that of a reference inhibitor. This model was used to evaluate the toxicity effect (inhibition effect) of metals on the iron oxidation activity of A. ferrooxidans. The model revealed that the iron oxidation behavior of the metals, regardless of metal systems (single, binary, ternary, or quaternary), is closely matched to that of any reference inhibitor at the same reduced inhibition concentration, $[I]_{reduced}$, which defines the ratio of the inhibitor concentration to the reduced inhibition constant. The model demonstrated that single metal systems and mixed metal systems with the same reduced inhibitor concentrations have similar toxic effects on microbial activity.

Strong Reducedness and Strong Regularity for Near-rings

  • CHO, YONG UK;HIRANO, YASUYUKI
    • Kyungpook Mathematical Journal
    • /
    • 제43권4호
    • /
    • pp.587-592
    • /
    • 2003
  • A near-ring N is called strongly reduced if, for $a{\in}N$, $a^2{\in}N_c$ implies $a{\in}N_c$, where $N_c$ denotes the constant part of N. We investigate some properties of strongly reduced near-rings and apply those to the study of left strongly regular near-rings. Finally we classify all reduced, and strongly reduced near-rings of order ${\leq}7$.

  • PDF

유한시간 감소차수 관측자의 설계 (On the Design of a Finite Time Reduced Order Observer)

  • 이기상
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.961-965
    • /
    • 2010
  • A reduced order observer with finite time convergence characteristics is proposed for linear time invariant systems. The proposed finite time reduced order observer(FTROO) is a dual observer scheme in which two reduced order Luenberger observers with asymptotic convergence characteristics and a finite time delay element are employed. The FTROO can be constructed so as to converge in the designer specified finite time independent of the eigenvalues of the reduced order observers. A numerical example is given to show the finite-time convergence characteristics of the proposed FTROO.