• Title/Summary/Keyword: Redox-flow battery

Search Result 114, Processing Time 0.028 seconds

Characterization analysis according to C-rate of Vanadium redox flow battery (C-rate에 따른 바나듐 레독스 플로우 배터리 특성분석)

  • Jang, So-Hee;Kim, Jong-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.178-179
    • /
    • 2016
  • 본 논문에서는 바나듐 레독스 플로우 배터리의 동작원리를 설명하고, C-rate에 따른 특성 분석을 하였다. 전해질 양이 18mL, 22mL일 때 0.1C, 0.3C, 0.5C, 0.7C, 0.9C, 1.0C로 전류의 크기에 변화를 주어 용량을 측정한 후 비교 분석하였다. 더불어 HPPC(Hybrid pulse power characterization) 실험에서 1.0C 일 때 잔존 용량(State-of-charge, SOC)의 변화에 따른 저항을 추출하였고 분석하였다. 그 결과 바나듐 레독스 플로우 배터리의 효율 분석을 위한 파라미터 값을 확인하였다.

  • PDF

Preparation of an Anion Exchange Membrane Using the Blending Polymer of Poly(ether sulfone) (PES) and Poly(phenylene sulfide sulfone) (PPSS) (폴리에테르설폰-폴리페닐렌설파이드설폰 블렌딩 고분자를 이용한 음이온교환막의 제조)

  • Lee, Kyung-Han;Han, Joo-Young;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.155-163
    • /
    • 2019
  • The anion exchange membrane using the blending polymer of poly(ether sulfone) and poly(phenylene sulfide sulfone) was prepared. It was confirmed by EDXS and FT-IR analysis that the prepared anion exchange membrane had the -N- as an anion exchange group. The ionic conductivity in 1 mol/L $H_2SO_4$ aqueous solution was measured. The ionic conductivity of the prepared anion exchange membrane was 0.015~0.083 S/cm, and had a high value compared with AFN and APS as a commercial anion exchange membrane. Permeabilities of the vanadium ions through the prepared anion exchange membrane were tested to evaluate the possibility as a separator in vanadium redox flow battery. Vanadium ion permeation rate in the prepared anion exchange membrane had a low value compared with Nafion 117 as a commercial cation exchange and AFN as a commercial anion exchange membrane.

Prediction of Life Time of Ion-exchange Membranes in Vanadium Redox Flow Battery (바나듐 레독스 흐름전지용 이온교환막의 수명 예측)

  • Cho, Kook-Jin;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.1
    • /
    • pp.14-20
    • /
    • 2016
  • Vanadium redox flow battery (VRFB) is an energy conversion device in which charging and discharging are alternatively carried out by oxidation and reduction reactions of vanadium ions with different oxidation states. VRFB consists of electrolyte, electrode, ion-exchange membrane, etc. The role of ion-exchange membranes in VRFB separates anolyte and catholyte and provides a high conductivity to hydrogen ions. Recently much attention has been devoted to develop ideal ion-exchange membranes for VRFB. A number of developed ion-exchange membranes should be evaluated to find out ideal ion-exchange membranes for VRFB. Long-term durability test is a crucial characterization of ion-exchange membranes for commercialization, but is very time-consuming. In this study, the life time prediction protocol of ion-exchange membranes in VRFB cell tests was developed through short-term single cell performance evaluation (real total operation time, 87.5 hrs) at three different current densities. We confirmed a decrease in test time up to 96.2% of real durability tests (expected total operation time, 2,296 hrs) and 5~6% of relative error discrepancy between the predicted and the real life time in a unit cell.

Perfluorinated Sulfonic Acid based Composite Membranes for Vanadium Redox Flow Battery (바나듐 레독스 흐름 전지를 위한 과불소화 술폰산 복합막)

  • Cho, Kook-Jin;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • Vanadium redox flow batteries (VRFBs) using the electrolytes containing various vanadium ions in sulfuric acid as supporting solution are one of the energy storage devices in alternatively charging and discharging operation modes. The positive electrolyte contains $V^{5+}/V^{4+}$ and the negative electrolyte $V^{2+}/V^{3+}$ depending on the operation mode. To prevent the mixing of two solutions, proton exchange membranes are mainly used in VRFBs. Nafion 117 could be the most promising candidate due to the strong oxidative property of $V^{5+}$ ion, but causes high crossover of electroactive species to result in a decrease in coulombic efficiency. In this study, the composite membranes using Nafion ionomer and porous polyethylene substrate were prepared to keep good chemical stability and to decrease the cost of membranes, and were compared to the properties and performance of the commercially available electrolyte membrane, Nafion 117. As a result, the water uptake and ionic conductivity of the composite membranes increased as the thickness of the composite membranes increased, but those of Nafion 117 slightly decreased. The permeability of vanadium ions for the composite membranes significantly decreased compared to that for Nafion 117. In a single cell test for the composite membranes, the voltage efficiency decreased and the coulombic efficiency increased, finally resulting in the similar energy efficiency. In conclusion, the less cost of the composite membranes by decreasing 6.4 wt.% of the amount of perfluorinated sulfonic acid polymer due to the introduction of porous substrate and lower vanadium ion permeability to decrease self-discharge were achieved than Nafion 117.

A Study on Corrosion Resistance and Electrical Surface Conductivity of an Electrodeposited Ni-W Thin Film (전해도금에 의한 Ni-W 합금의 내식성 및 표면 전도도 특성 연구)

  • Park, Je-Sik;Jeong, Goo-Jin;Kim, Young-Jun;Kim, Ki-Jae;Lee, Churl-Kyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.2
    • /
    • pp.68-73
    • /
    • 2011
  • A Ni-W thin-film was synthesized by electrodeposition, and its corrosion resistance and electrical surface conductivity were investigated. Amount of tungsten in the Ni-W thin-film increased linearly with current density during the electrodeposition, and crack-free and low-crystalline Ni-21 at.%W coating layer was obtained. Corrosion resistances of the Ni-W thin-films were examined with an anodic polarization method and a storage test in a strong sulfuric acid solution. As a result, the Ni-21 at.%W thin-film exhibited the greatest corrosion resistance, and maintained the electrical surface conductivity even after the severe corrosion test, which could be applicable as a surface treatment for advanced metallic bipolar plates in fuel cell or redox flow battery systems.

The Effects of Different Membranes on the Performance of Aqueous Organic Redox Flow Battery Using Anthraquinone and TEMPO Redox Couple (안트라퀴논과 템포 활물질 기반 수계 유기 레독스 흐름 전지에서의 멤브레인 효과)

  • Lee, Wonmi;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.695-700
    • /
    • 2019
  • n this study, the evaluation of performance of AORFB using anthraquinone derivative and TEMPO derivative as active materials in neutral supporting electrolyte with various membrane types was performed. Both anthraquinone derivative and TEMPO derivative showed high electron transfer rate (the difference between anodic and cathodic peak potential was 0.068 V) and the cell voltage is 1.17 V. The single cell test of the AORFB using 0.1 M active materials in 1 M KCl solution with using Nafion 212 membrane, which is commercial cation exchange membrane was performed, and the charge efficiency (CE) was 97% and voltage efficiency (VE) was 59%. In addition, the discharge capacity was $0.93Ah{\cdot}L^{-1}$ which is 35% of theoretical capacity ($2.68Ah{\cdot}L^{-1}$) at $4^{th}$ cycle and the capacity loss rate was $0.018Ah{\cdot}L^{-1}/cycle$ during 10 cycles. The single cell tests were performed with using Nafion 117 membrane and SELEMION CSO membrane. However, the results were more not good because of increased resistance because of thicker thickness of membrane and increased cross-over of active materials, respectively.

Trends in safety improvement technologies for an electric propulsion system of eco-friendly ships (친환경 선박용 전기추진시스템 안전성 향상 기술개발 동향)

  • Kim, Sehwan;Choi, Gilsu;Lee, Jae Suk
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.556-564
    • /
    • 2021
  • This paper presents trends of safety improvement technologies for an electric propulsion system of eco-friendly ships. As an effort to reduce a green house effect, demands for eco-friendly ships have been increased. An energy storage system (ESS) is one of key systems in an eco-friendly ship and a lithium-ion battery generally used in an ESS system due to its high power density and efficiency. However, a lithium-ion battery is considered as one of reasons for ESS fire hazard. Since a fire extinguishing facility is especially limited in the ocean, safety issue in an eco-friendly ship is important. In this paper, recent safety improvement technologies for traction motors, ESS batteries and structures for eco-friendly ships are presented.

Preparation and Properties of Sulfonated Polyvinylchloride (PVC) Membrane for Capacitive Deionization Electrode by Ultra Sonication Modification (초음파 표면개질에 의한 CDI 전극용 술폰화 염화비닐(PVC) 멤브레인의 제조 및 특성)

  • Hwang, Chi Won;Oh, Chang Min;Hwang, Taek Sung
    • Journal of Adhesion and Interface
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Ion exchange membrane is widely used in various fields such as electro dialysis, diffusion dialysis, redox flow battery, fuel cell. PVC cation exchange membrane using ultrasonic modification was prepared by sulfonation reaction in various sulfonation times. Sulfuric acid was used as a sulfonating agent with ultrasonic condition. We've characterized basic structure of sulfonated PVC cation exchange membrane by FT-IR, EDX, water uptake, ion exchange capacity (IEC), electrical resistance (ER), conductivity, ion transport number and surface morphology (SEM). The presence of sulfonic groups in the sulfonated PVC cation exchange membrane was confirmed by FT-IR. The maximum values of water uptake, IEC, electrical resistance and ion transport number were 40.2%, 0.87 meq/g, $35.2{\Omega}{\cdot}cm^2$ and 0.88, respectively.

Preparation of V3.5+ Electrolyte for Vanadium Redox Flow Batteries using Carbon Supported Pt Dendrites Catalyst (카본 담지 백금 덴드라이트 촉매를 이용한 바나듐 레독스 흐름전지용 3.5가 바나듐 전해질의 제조)

  • Lee, Hojin;Kim, Hansung
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.113-119
    • /
    • 2021
  • In this study, impurity free V3.5+ electrolytes were prepared using formic acid as a reducing agent and PtD/C as a catalyst and it was applied to VRFB. The well-oriented 3D dendrite structure of the PtD/C catalyst showed high catalytic activity in formic acid oxidation reaction and vanadium reduction reaction. As a result, the conversion ratio of electrolyte using the PtD/C was 2.73 mol g-1 h-1, which was higher than that of 1.67 mol g-1 h-1 of Pt/C prepared by the polyol method. In addition, in the VRFB charging and discharging experiment, the V3.5+ electrolyte produced by the catalytic reaction showed the same performance as the standard V3.5+ electrolyte prepared by the electrolytic method, thus proving that it can be used as an electrolyte for VRFB.

A Study on Interleaved Bi-directional DC-DC converter for Redox Flow Battery of Four Phase type (Four Phase 형태의 레독스 흐름전지용 인터리브드 양방향 DC-DC컨버터에 관한 연구)

  • Park, Ji-Ho;Oh, Seung-Yeol;Park, Byung-Chul;Choi, Jung-Sik;Cha, Dae-Seak;Song, Sung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.155-156
    • /
    • 2013
  • 최근 화석에너지 고갈과 환경문제, 전력대란을 격음으로써 신재생 에너지에 관한 관심이 많아지고 있다. 특히 연료전지를 이용하여 높은 신뢰성의 양방향 DC-DC컨버터가 요구되어 많은 연구개발이 진행되고 있다. 그중 컨버터를 병렬로 구동하여 전류리플을 줄이는 인터리브드 방식을 많이 사용하지만 인덕터의 부피, 비용이 증가하는 단점이 있다. 본 논문에서는 결합 인덕터를 이용한 Four-Phase 형태의 인터리브드 양방향 DC-DC 컨버터를 제안하고, 최적의 결합계수와 인덕터에 흐르는 전류 리플 저감을 PSIM 시뮬레이션을 통해 검증한다.

  • PDF