• Title/Summary/Keyword: Redox polymer

Search Result 83, Processing Time 0.034 seconds

Co-Electrodeposition of Bilirubin Oxidase with Redox Polymer through Ligand Substitution for Use as an Oxygen Reduction Cathode

  • Shin, Hyo-Sul;Kang, Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3118-3122
    • /
    • 2010
  • The water soluble redox polymer, poly(N-vinylimidazole) complexed with Os(4,4'-dichloro-2,2'-bipyridine)$_2Cl]^+$ (PVI-[Os(dCl-bpy)$_2Cl]^+$), was electrodeposited on the surface of a glassy carbon electrode by applying cycles of alternating square wave potentials between 0.2 V (2 s) and 0.7 V (2 s) to the electrode in a solution containing the redox polymer. The coordinating anionic ligand, $Cl^-$ of the osmium complex, became labile in the reduced state of the complex and was substituted by the imidazole of the PVI chain. The ligand substitution reactions resulted in crosslinking between the PVI chains, which made the redox polymer water insoluble and caused it to be deposited on the electrode surface. The deposited film was still electrically conducting and the continuous electrodeposition of the redox polymer was possible. When cycles of square wave potentials were applied to the electrode in a solution of bilirubin oxidase and the redox polymer, the enzyme was co-electrodeposited with the redox polymer, because the enzymes could be bound to the metal complexes through the ligand exchange reactions. The electrode with the film of the PVI-[Os(dCl-bpy)$_2Cl]^+$ redox polymer and the co-electrodeposited bilirubin oxidase was employed for the reduction of $O_2$ and a large increase of the currents was observed due to the electrocatalytic $O_2$ reduction with a half wave potential at 0.42 V vs. Ag/AgCl.

The Electrochemical Studies of Two Osmium Redox Polymer Films and Their Application for Multi-Detecting Biosensor (전기화학적인 방법을 이용한 두 개의 오스뮴 고분자 막의 고정화 및 다중 검출 바이오센서에 관한 연구)

  • Tae, Gun-Sik;Kim, Jin-Gu;Choi, Young-Bong;Kim, Hyug-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.170-175
    • /
    • 2008
  • Screen printed carbon electrodes (SPEs) modified with co-immobilized osmium-based redox polymers can be used to apply multi-detecting biosensors. In this study, we report our initial studies of multi-detecting biosensor concepts using two osmium-based redox polymers for horseradish peroxidase-mediated reduction of ${H_2}{O_2}$ coupled to glucose oxidase-mediated oxidation of glucose. We target to synthesize two osmium redox polymers of potentials use, a chloride-containing redox polymer ($E^{O'}$ + 0.520 vs. Ag/AgCl) and a methoxy-containing redox polymer $E^{O'}$ + 0.150 vs. Ag/AgCl). The former show good catalytic electrical signals with horseradish peroxidase and the latter's redox polymer is to be an effective redox mediator of glucose oxidation by glucose oxidase.

Synthesis of a New Cathode Redox Polymer for High Performance in Biofuel Cells

  • Choi, Young-Bong;Lee, Jung-Min;Kim, Hyug-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2803-2808
    • /
    • 2014
  • High potential and fast electron transfer of a cathode mediator are significant factors for improving the performance of biofuel cells. This paper reports the first synthesis of a cathode redox polymer that is a coordination complex of poly (acrylic acid-vinylpyridine-acryl amide) (PAA-PVP-PAA) and [Os(4,4'-dicarboxylic acid-2,2'-bipyridine)$_2Cl_2]^{/+}$ ($E^{\circ}=0.48V$ versus Ag/AgCl). Bilirubin oxidase can be easily incorporated into this polymer matrix, which carried out the four-electron oxygen under typical physiological conditions (pH 7.2, 0.14 M NaCl, and $37^{\circ}C$). This new polymer showed an approximately 0.1 V higher redox potential than existing cathode mediators such as PAA-PVI-$[Os(dCl-bpy)_2Cl]^{+/2+}$. In addition, we suggest increasing the polymer solubility with two hydrophilic groups present in the polymer skeleton to further improve fast electron transfer within the active sites of the enzyme. The maximum power density achieved was 60% higher than that of PAA-PVI-$[Os(dCl-bpy)_2Cl]^{+/2+}$. Furthermore, high current density and electrode stability were confirmed for this osmium polymer, which makes it a promising candidate for high-efficiency biofuel cells.

The Possibility of 1,3,4-Oxadiazole Containing Polymer as a New Polymer Electrode in Redox Supercapacitor

  • Ryu, Kwang-Sun;Chang, Soon-Ho;Kwon, Soon-Ki;Kim, Yun-Hi;Hwang, Do-Hoon
    • Macromolecular Research
    • /
    • v.10 no.1
    • /
    • pp.40-43
    • /
    • 2002
  • Poly(1', 4'-phenylene-1", 4"-(2"-(2""-ethyl-hexyloxy)) phenylene-1",4"-phenylene-2,5-oxadiazolyl) (PPEPPO) was synthesized and its electrochemical characteristics was investigated as electrode material in redox supercapacitor. The cyclic voltammetry (CV) shows there was scarcely a redox reaction and further suggests n-doping is difficult to occur in this system. However, the discharge curve between 3.0 to 0.01 V is continuously decreased like a straight line, similar to the discharge pattern of EDLC. The initial specific discharge capacitance is ~6.4 F/g, while the specific capacitance of 1000th cycle is ~0.1 F/g. The PPEPPO can be used as the electrode of supercapacitor, emissive material, as well as charge-transporting material in polymer LED.ansporting material in polymer LED.

Catalytic effects of heteroatom-rich carbon-based freestanding paper with high active-surface area for vanadium redox flow batteries

  • Lee, Min Eui;Kwak, Hyo Won;Jin, Hyoung-Joon
    • Carbon letters
    • /
    • v.28
    • /
    • pp.105-110
    • /
    • 2018
  • Owing to their scalability, flexible operation, and long cycle life, vanadium redox flow batteries (VRFBs) have gained immense attention over the past few years. However, the VRFBs suffer from significant polarization, which decreases their cell efficiency. The activation polarization occurring during vanadium redox reactions greatly affects the overall performance of VRFBs. Therefore, it is imperative to develop electrodes with numerous catalytic sites and a long cycle life. In this study, we synthesized heteroatom-rich carbon-based freestanding papers (H-CFPs) by a facile dispersion and filtration process. The H-CFPs exhibited high specific surface area (${\sim}820m^2g^{-1}$) along with a number of redox-active heteroatoms (such as oxygen and nitrogen) and showed high catalytic activity for vanadium redox reactions. The H-CFP electrodes showed excellent electrochemical performance. They showed low anodic and cathodic peak potential separation (${\Delta}E_p$) values of ~120 mV (positive electrolyte) and ~124 mV (negative electrolyte) in cyclic voltammetry conducted at a scan rate of $5mV\;s^{-1}$. Hence, the H-CFP-based VRFBs showed significantly reduced polarization.

Chemical and Electrochemical Synthesis of Highly Conductive and Processable PolyProDOP-alkyl Derivatives

  • Cho, Youn-Kyung;Pyo, Myoung-Ho;Zong, Kyu-Kwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.1
    • /
    • pp.57-62
    • /
    • 2010
  • New monomers, possessing various alkyl substituents on propylene dioxypyrrole, were synthesized. The monomers could be easily polymerized to produce highly conductive and soluble polymers. The corresponding polymers showed excellent solubility, retaining electrochemical and optical properties of their parent polymer [poly(propylene dioxypyrrole)]. The conductivities of chemically prepared polymers were quite high in a range of 20 and $60\;Scm^{-1}$. Solubility of the polymer in a common organic solvent was as high as no polymer is deposited on an electrode. The redox potentials of the electrochemically prepared polymers revealed quite stable electro-activity during repeated redox switching up to 500 times. The optoelectrochemistry studies also showed distinct color changes of the polymers upon changing the doping state, indicating strong absorption peaks at 400~600 nm in reduced states and complete bleaching in fully oxidized states.

PET Fabric/Poly(3,4-ethylenedioxythiophene) Composite as Polymer Electrode in Redox Supercapacitor

  • Cho, Seung-Hyun;Joo, Jin-Soo;Jung, Bo-Ram;Ha, Tae-Min;Lee, Jun-Young
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.746-749
    • /
    • 2009
  • Poly(ethylene terephthalate) (PET) fabric/poly(3,4-ethylenedioxythiophene) (PEDOT) composite with stable and high electrochemical activity was fabricated by chemical and electrochemical polymerization of 3,4-ethylenedioxythiophene (EDOT) on a PET fabric in sequence. Effects of polymerization conditions on the following characteristics of the composite were studied: electrical conductivity and surface morphology. The electrochemical properties were also investigated by cyclic voltammetry and cyclic charge/discharge experiments. The specific volume resistivity, electrical conductivity and specific discharge capacitance of the composite were 0.034 $\Omega-cm$ and 25 S/cm, and 54.5 F/g, respectively.

Design and Synthesis of Devices Releasing Insulin in response to Redox Reaction of Glucose (Glucose의 Redox 반응에 의한 인슐린 방출 Device의 설계와 합성)

  • Chung, Dong-June;Ito, Yoshihiro;Imanishi, Yukio;Shim, Jyong-Sup
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.107-115
    • /
    • 1990
  • New insulin-releasing system on the basis of the redox reaction of glucose was synthesized by immobilizing insulin through a disulfide bond(5, 5'-dithiobis(2-nitrobenzoic acid) to polymer membrane(poly(methyl methacrylate)) and enzyme(glucose oxidase). The disulfide bonds were cleaved upon oxidation of glucose with glucose dehydrogenase and glucose oxidase, releasing insulin from the membrane and enzyme. Sensitivity to glucose concentration was enhanced by coimmobilization of enzyme cofactors(nicotinamide adenin dinucleotide and flavin adenin dinucleotide) acting as electron mediator(for the membrane device), and further enhanced by direct immobilization of insulin on glucose oxidase(for the protein device). Both systems were specific to glucose, and the released insulin was indistinguishable from native insulin. The biological activity of released insulin was 81% of native insulin.

  • PDF