• Title/Summary/Keyword: Recycling model

Search Result 358, Processing Time 0.028 seconds

Recycling Technology of Cementitious Powder for Completely Recycling of Concrete Waste (폐콘크리트의 순환이용을 위한 폐미분말의 재활용 기술)

  • Park, Cha-Won;Kang, Byeung-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.3 s.17
    • /
    • pp.109-116
    • /
    • 2005
  • Recently, there have been many studies seeking towards the utilization of cementitious powder from concrete waste as recycled cement. However, most of the studies actually have been researches about the reuse of mortar or paste, not concrete waste. In fact, either mortar or paste is quite different from a real concrete waste in terms of age and mixture. Thus the purpose of this study is to examine basic physical properties of recycled cement, manufactured with cementitious powder from concrete waste, and analyze differences in chemical and hydraulic properties of the cement and its tested model. As a result of the chemical analysis, recycle cement is composed mainly of CaO and $SiO_2$, and that it is even lower in the content of CaO than Portland cement, which is also supported by previous studies. But, Differently from previous studies, calcining temperature of 650 was found an optimal condition under which cementitious powder from concrete waste could restore its hydraulic properties.

Prediction of greenhouse gas emission from municipal solid waste for South Korea

  • Popli, Kanchan;Lim, Jeejae;Kim, Hyeon Kyeong;Kim, Young Min;Tuu, Nguyen Thanh;Kim, Seungdo
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.462-469
    • /
    • 2020
  • This study is proposing a System Dynamics Model for estimating Greenhouse Gas (GHG) emission from treating Municipal Solid Waste (MSW) in South Korea for years 2000 to 2030. The government of country decided to decrease the total GHG emission from waste sector in 2030 as per Business-as-usual level. In context, four scenarios are generated to predict GHG emission from treating the MSW with three processes i.e., landfill, incineration and recycling. For prior step, MSW generation rate is projected for present and future case using population and waste generation per capita data. It is found that population and total MSW are directly correlated. The total population will increase to 56.27 million and total MSW will be 21.59 million tons in 2030. The methods for estimating GHG emission from landfill, incineration and recycling are adopted from IPCC, 2006 guidelines. The study indicates that Scenario 2 is best to adopt for decreasing the total GHG emission in future where recycling waste is increased to 75% and landfill waste is decreased to 7.6%. Lastly, it is concluded that choosing proper method for treating the MSW in country can result into savings of GHG emission.

A Study on Simulation of Chip Recycling System for the Management of Cutting Chip in 5-Axis FMS Line (5축 FMS라인의 절삭 칩 처리를 위한 칩 회수처리장치 시뮬레이션에 관한 연구)

  • Lee, In-Su;Kim, Hae-Ji;Kim, Deok-Hyun;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.175-181
    • /
    • 2013
  • The primary element of machining automation is to maximize the utilization of machine tools, which determines the output and lead-time. In particular, 95% of raw materials for wing ribs are cut into chips and 0.6 ton of chips are generated every hour from each machine tool. In order to verify the chip recycling system that controls the chips from the machines in five-axis FMS line, a simulation of the virtual model is constructed using the QUEST simulation program. The optimum speed of the chip conveyor and its operating conditions that directly affect the efficiency of the FMS line are presented including the chip conveyor speed, the maximum capacity of the hopper, and the number of chip compressors.

A Study on the Decommissioning of Oil and Gas Platform (오일 및 가스 플랫폼의 해체에 관한 연구)

  • Jeon, Chang Su
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1081-1091
    • /
    • 2020
  • The most recent issue of offshore plants that produce oil and gas are the decommissioning engineering of aged or discontinued platforms. There are many platforms that are being dismantled in the United States, Europe, and areas in Southeast Asia. In particular, more than 400 old platforms in Southeast Asia (Indonesia, Malaysia) are preparing to dismantle. They are spread out across Southeast Asia with a water level of 50 meters and small-scale of less than 10,000 tons. However, this offshore plant decommissioning market is a very suitable market for small and medium-sized shipyards in Korea to enter with their established equipment and engineers. Platform decommissioning is conducted according to decommissioning procedures. However, there are some difficulties in market advances as no developed case studies or process models are established on how platform structures and components are to be dismantled and how the dismantled material is to be reused and recycled. Therefore, this study presented domestic and foreign regulations on the reuse and recycling of oil and gas producing offshore plant platforms, case analyses on developed decommissioning engineering, platform reuse and recycling guidelines, and platform and pipeline decommissioning processes and methods.

Modeling of Recycling Oxic and Anoxic Treatment System for Swine Wastewater Using Neural Networks

  • Park, Jung-Hye;Sohn, Jun-Il;Yang, Hyun-Sook;Chung, Young-Ryun;Lee, Minho;Koh, Sung-Cheol
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.5
    • /
    • pp.355-361
    • /
    • 2000
  • A recycling reactor system operated under sequential anoxic and oxic conditions for the treatment of swine wastewater has been developed, in which piggery slurry is fermentatively and aerobically treated and then part of the effluent is recycled to the pigsty. This system significantly removes offensive smells (at both the pigsty and the treatment plant), BOD and others, and may be cost effective for small-scale farms. The most dominant heterotrophic were, in order, Alcaligenes faecalis, Brevundimonas diminuta and Streptococcus sp., while lactic acid bacteria were dominantly observed in the anoxic tank. We propose a novel monitoring system for a recycling piggery slurry treatment system through the use of neural networks. In this study, we tried to model the treatment process for each tank in the system (influent, fermentation, aeration, first sedimentation and fourth sedimentation tanks) based upon the population densities of the heterotrophic and lactic acid bacteria. Principal component analysis(PCA) was first applied to identify a relationship between input and output. The input would be microbial densities and the treatment parameters, such as population densities of heterotrophic and lactic acid bacteria, suspended solids(SS), COD, NH$_4$(sup)+-N, ortho-phosphorus (o-P), and total-phosphorus (T-P). then multi-layer neural networks were employed to model the treatment process for each tank. PCA filtration of the input data as microbial densities was found to facilitate the modeling procedure for the system monitoring even with a relatively lower number of imput. Neural network independently trained for each treatment tank and their subsequent combined data analysis allowed a successful prediction of the treatment system for at least two days.

  • PDF

Optimization of Color Sorting Process of Shredded ELV Bumper using Reaction Surface Method (반응표면법을 이용한 폐자동차 범퍼 파쇄물의 색채선별공정 최적화 연구)

  • Lee, Hoon
    • Resources Recycling
    • /
    • v.28 no.2
    • /
    • pp.23-30
    • /
    • 2019
  • An color sorting technique was introduced to recycle End-of-life automobile shredded bumpers. The color sorting is a innovate method of separating the differences in the color of materials which are difficult to separate in gravity and size classification by using a camera and an image process technique. Experiments were planned and optimal conditions were derived by applying BBD (Box-Behnken Design) in the reaction surface method. The effects of color sensitivity, feed rate and sample size were analyzed, and a second-order reaction model was obtained based on the analysis of regression and statistical methods and $R^2$ and p-value were 99.56% and < 0.001. Optimum recovery was 94.1% under the conditions of color sensitivity, feed rate and particle size of 32%, 200 kg/h, and 33 mm respectively. The recovery of actual experiment was 93.8%. The experimental data agreed well with the predicted value and confirmed that the model was appropriate.

Utilization of Waste Concrete as Vertical Drain Material (연직배수재료로 폐콘크리트 활용에 관한 기초연구)

  • 이용수;정하익;김우성;권용완
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.571-576
    • /
    • 2001
  • This paper presents the utilization of waste concrete as vertical drain material. The materials used as vertical drain material were the waste concrete, obtained from the demolished apartments or concrete structure and sand. In this study, laboratory model test was performed to investigate settlement and bearing capacity between sand compaction pile and waste concrete compaction pile. The results of laboratory model test showed that the improvement efficiency of soft ground by waste concrete compaction pile was better than sand compaction pile.

  • PDF

Calculation and Projection of Greenhouse Gas Emissions from La Chureca Landfill in Managua, Nicaragua (니카라과 마나과시 La Chureca 매립장 온실가스 발생량 산정 및 예측)

  • Kim, Choong Gon;Lee, Hyun Jun;Kang, Ho Jeung;Kim, Jae Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.131-139
    • /
    • 2022
  • The aim of this study was to assess the feasibility of a landfill project to reduce greenhouse gas (GHG) from La Chureca Landfill in Managua, Nicaragua ("Project"). The feasibility study involved surveying the status and composition of waste on its way in to the landfill and projecting GHG emissions from the landfill. A projection of the GHG emissions with the IPCC model based on the survey results indicated the period 2006 to 2043 would see mean yearly GHG emissions of 290,147 ton-CO2/year with model certainty not considered, and 217,610 ton-CO2/year with model certainty considered. Thus, the result exceeded the corresponding median and mean values of other CDM projects implemented in Central America, even after model uncertainty was considered together with the conservative estimation of carbon capture efficiency. The similar result was produced even with an analysis of sensitivity to error factors. All the findings of the study are expected to be applicable as basic data for deciding about whether & how to proceed with the Project.

Effects of Continental Evaporation for Precipitation Over East Asia in the Past and the Future of HadGEM2-AO Climate Model (HadGEM2-AO 기후모델에 따른 과거와 미래의 동아시아 강수량에 대한 육지 증발량의 영향)

  • Kim, Jin-Uk;Lee, Johan;Boo, Kyung-On;Shim, Sungbo;Kim, Jee-Eun;Byun, Young-Hwa
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.553-563
    • /
    • 2016
  • Land evaporation contribution to precipitation over East Asia is studied to understand terrestrial moisture source of continental precipitation. Moisture recycling of precipitation relying on terrestrial evaporation is estimated based on the analysis method of Van der Ent et al. (2010). We utilize HadGEM2-AO simulations for the period of 1970~1999 and 2070~2099 from RCP8.5. Globally, 46% of terrestrial precipitation is depending from continental evaporation. 58% of terrestrial evaporation returns as continental precipitation. Over East Asia, precipitation has been affected by local evaporation and transported moisture. The advection of upwind continental evaporation results from the prevailing westerlies from the midwestern of Eurasian continent. For the present-day period, about 66% of the precipitation over the land of East Asia originates from land evaporation. Regionally, the ratios change and the ratios of precipitation terrestrial origin over the Northern inland and Southern coast of East Asia are 82% and 48%, respectively. Seasonally, the continental moisture recycling ratio is larger during summer (JJA) than winter (DJF). According to RCP8.5, moisture recycling ratio is expected to change. At the end of the 21st century, the impact of continental moisture sources for precipitation over East Asia is projected to be reduced by about 5% compared to at the end of 20th century. To understand the future changes, moisture residence time change is investigated using depletion and replenishment time.

ESG Management Practice Led by BYN Black Yak: The Resource Circulation System for Recycling Domestic Transparent PET Bottle ((주)BYN블랙야크의 ESG 경영 실천 사례 : 국내 투명 페트병 자원순환 시스템을 중심으로)

  • Kang, Tae Sun;Kim, Youn Sung;Jung, Dexter
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.3
    • /
    • pp.433-446
    • /
    • 2021
  • Purpose: The main purpose of this study is to analyze the case of the transparent PET bottle resource circulation project of BYN Black Yak Co., Ltd., present implications, and propose ways to spread it in the future. Methods: In this study, the logic of the Double Diamond Model is applied to analyze the development process of sustainable fashion made from BYN Black Yak Co., Ltd.'s PET Bottle Resource Circulation System. Results: The K-rPET Resource Circulation Project of BYN Black Yak Co., Ltd. is recognized as a best example for its contribution to eco-friendly activities, solving social problems, raising consumer awareness, and sharing recycling habits. Before the plastic bottle becomes a garment, five steps are taken (discharge of PET bottle → collection of PET bottle → recycling of PET bottle → fabrication of yarn → production of the finished product out of the fabric). BYN Black Yak Co., Ltd. has successfully commercialized it by recycling reverse-recovery PET bottles by making solutions to problems that have not been solved at each stage. Conclusion: In addition to efforts to find and strengthen weak links presented in the Theory of Constrains (TOC), it appears to have systematically carried out activities to convert stakeholder discomforts into a package of gain points. As shown in the slogan "We are all in!" the proposal and implementation for the completion of a true environmental system is judged to have truly performed ESG management well for the company's business. ESG management activities at BYN Black Yak Co., Ltd. are expected to continue.