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Abstract A recycling reactor system operated under sequential anoxic and oxic conditions for
the treatment of swine wastewater has been developed, in which piggery slurry is fermenta-
tively and aerobically treated and then part of the effluent is recycled to the pigsty. This sys-
tem significantly removes offensive smells (at both the pigsty and the treatment plant),
BOD and others, and may be cost effective for small-scale farms. The most dominant hetero-
trophic were, in order, Alcaligenes faecalis, Brevundimonas diminuta and Streptococcus sp.,
while lactic acid bacteria were dominantly observed in the anoxic tank. We propose a novel
monitoring system for a recycling piggery slurry treatment system through the use of neural
networks. In this study, we tried to model the treatment process for each tank in the system
(influent, fermentation, aeration, first sedimentation and fourth sedimentation tanks) based
upon the population densities of the heterotrophic and lactic acid bacteria. Principal compo-
nent analysis (PCA) was first applied to identify a relationship between input and output.
The input would be microbial densities and the treatment parameters, such as population
densities of heterotrophic and lactic acid bacteria, suspended solids (5S), COD, NH,*-N, or-
tho-phosphorus (0-P), and total-phosphorus (T-P). Then multi-layer neural networks were
employed to model the treatment process for each tank. PCA filtration of the input data as
microbial densities was found to facilitate the modeling procedure for the system monitoring
even with a relatively lower number of input. Neural networks independently trained for
each treatment tank and their subsequent combined data analysis allowed a successful pre-
diction of the treatment system for at least two days.

Keywords: piggery slurry, neural network, principal component analysis (PCA), heterotrophs,
lactic acid bacteria (LAB), Alcaligenes faecalis

INTRODUCTION

Swine wastes may cause a serious deterioration of
water quality, such as eutrophication and spread of
pathogens in water bodies [1]. The daily volume of live-
stock wastewater in Korea reached 197,000 m?® while
50% of this volume was generated from dairy farms
that are exempt from a legal pollution control. The
amount of wastewater is relatively small compared
with total wastewater including industrial and domes-
tic wastewater (7% of the total), but contributes sig-
nificantly to the pollution of the receiving waters be-
cause of its high organic nutrient concentration (>BOD
20,000 mg/L) [2]. According to the environmental pro-
tection law, the large size farms (more than 1,000
heads) are subjected to regulations for treatment facili-
ties whereas small or middle size farms (less than 1,000
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heads) are exempt from the regulations. The number of
swine heads under the regulatory control, therefore,
takes only 31% of the total number of heads [3].

Recently, a recycling reactor system operated under
sequential oxic and anoxic conditions for the treatment
of swine wastewater has been developed, in which pig-
gery slurry is fermentatively and aerobically treated and
then its effluent recycled to the pigsty [4]. This system
appears to significantly remove offensive smells (at
both the pigsty and the treatment plant) and BOD, and
turns out to be cost effective for relatively small size
farms.

There are several treatment steps in the system. For
its successful operation, it will be necessary to monitor
microbial population density and treatment parameters.
Modeling relationships among these variables will be
useful in predicting treatment effects and managing the
system. One of the best known models applied for
wastewater treatment systems so far is the activated
sludge model No. 1 (ASM 1) introduced by Interna-
tional Association for Water Quality (IAWQ) in 1987
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(5]. Application of the model to field treatment system,
however, may have some limitations because there are
many operational parameters and kinetic changes over
time in the treatment system [6]. Neural network mod-
els that imitate the functions of the human brain have
been successfully used for many engineering problems
such as complex pattern classification and control of
highly nonlinear dynamic systems [7-10]. Those models
have the characteristic of allowing massive parallelism,
many degrees of freedom, and adaptive learning. It was
recently shown that the multi-layer neural network can
approximate a function in L? within an arbitrary accu-
racy [11], and can generalize a new data set that was
not used in the learning process [12]. Recently, progress
has been made in application of neural networks to
control biological and chemical engineering processes.
There has been, however, no report dealing with a neu-
ral network model for biological swine wastewater
treatment systems.

This study was carried out to investigate the mecha-
nistic basis of the recycling treatment system in terms
of population dynamics and activity (treatment effect)
of the indigenous heterotrophic bacteria, by establish-
ing a non-linear model emulator using multi-level neu-
ral networks. The eventual goal of this study will be to
construct a real time monitoring system of the recy-
cling treatment for swine waste using a multi-layer
neural network with an error back propagation learning
algorithm. The multi-layer neural networks contribute
to modeling the complex relationship between the vari-
ous population densities of microorganisms and treat-
ment effects of the recycling system for piggery slurry.

MATERIAL AND METHODS
System Overview

A scheme for the recycling treatment system at a
bench scale is shown in Fig. 1. Piggery slurry and
treated effluent used as washing water were collected in
Tank 1, and this influent then flows into the fermenta-
tion tank (Tank 2; 15 L). There is a channel between
Tank 2 and an aeration tank (Tank 3; 15 L) so that the
fermented wastewater can be transported into Tank 3
where oxidative treatment occurs under aerobic condi-
tions (7.8 vvm air). The treated water then goes
through a sedimentation process in Tanks 6 and 7, and
finally is stored in Tank 8. A portion of the effluent was
recycled and used to wash the pigsty. The wastewater
used in this study was sampled from a mixing and stor-
age tank at a Kimhae piggery slurry treatment plant
and had a COD of 4,000 (mg/L), BOD of 7,000 (mg/L),
T-N of 2,100 (mg/L), and T-P of 172 (mg/L}). The influ-
ent consisted of piggery slurry (33%, v/v), effluent
(57%) and tap water (10%) and was supplied every 4
days. Glucose was added to the formulated influent to
make a C/N ratio of 100:15 [13] and a microbial agent
(YC2000, Yoonchang Agricultural Management, Inc,,
Cheju, Korea) was also added up to 1 %(w/v). The hy-
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Fig. 1. Schematic diagram of the recycling treatment system for pig-
gery slurry; (1) Influent tank, (2) Fermentation tank, (3) Aeration
tank, (4) Blower, (5) antifoaming device, (6) Sedimentation tanks(A, B,
C and D), (7) Reservoir, (8) Storage tank, (9) Recycling flow, (10) For
land application.

draulic retention time of the system was 4 days and
was operated for 47 days.

Isolation and Identification of Microorganisms

Heterotrophic bacteria potentially involved in the
piggery slurry treatment within the system were iso-
lated using selective media {14]. To isolate and grow
lactic acid bacteria (LAB), MRS medium was used. The
ingredients of the medium were, per liter: Bacto pro-
teose peptone NO.3 5 g, yeast extract 2.5 g, dextrose 10
g, Tween 80 g, (NH,),HC,H,;O, 1 g, CH,COONa - 3H,0
4.14 g, MgSO, - 7H,0 0.1 g, MnSO, - 5H,O 0.04 g,
Na,PO, - 12H,0 2.5 g, Beef extract 10 g; pH 6.5. After
autoclaving, a trace amount of bromophenol blue was
added as an indicator. LAB were grown at least 2 weeks
before identification and counting were performed.
Other heterotrophs were grown on TSA (Difco Trypti-
case Soy Agar) for at least 1 week, and then identified
and counted.

The bacterial communities in the system were ana-
lyzed based on their isolation, identification and deter-
mining the colony forming unit number (population
density) of each dominant populations in each medium.
Identification of the bacteria was done using the selec-
tive media and differences in their physiological and
biochemical characteristics as described by Smibert et al.
[15] and Holt et al. [16]. Utilization of sugar, amino
acids and organic acids by Gram negative bacteria were
tested using an API Kit (Bio Merieux SA, France) ac-
cording to the manufactures protocol.

Analytical Methods for Piggery Slurry from the
Treatment System

Monitoring parameters, such as SS, T-N, NH,*-N, T-F,
o-P and COD, were measured following the Standard
Methods for the Examination of Water and Wastewater
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[17}: COD by closed reflux, titrimetric method, T-P and
ortho-P by ascorbic acid method, suspended solids by
total suspended solids cride method, and NH,*-N by
indol phenol method.

Modeling of the Treatment System Using Neural
Networks

For an optimal treatment of piggery slurry, it is im-
portant to understand the physiological characteristics
of microorganisms and their relationships, but may be
difficult to identify the relationship by a linear analyti-
cal method. The relationship between the population
densities of the microorganisms and the treatment effi-
ciency shows a nonlinear dynamic characteristic. We
used a multi-layer neural network with an error back
propagation algorithm to model the complex relation-
ship in the recycling system. Since the multi-layer neu-
ral network is able to approximate an arbitrary nonlin-
ear function with sufficient input and output data, the
modeling of the recycling piggery slurry treatment sys-
tem can be accomplished using the neural network for
complex dynamic systems. For modeling of the recy-
cling system, we considered a cause and effect relation
in each tank. As independent parameters in each tank,
the population densities of the microorganisms, MRS
type 1 and TSA types 1, 2, 3, were considered because
those could significantly affect the treatment efficiency
for piggery slurry. Also, COD, total- F, ortho-P, SS and

H,"-N were considered as treatment parameters in
each tank. Thus, we designed a multi-layer neural net-
work in which the input nodes consisted of 4 independ-
ent parameters in any given tank and 5 treatment re-
sults from the previous tank, and the output nodes were
generated as the 5 treatment results in the given tank.

To model the recycling system, there are two ways to
use the neural network. One is to use a single neural
network for modeling the characteristics of all the tanks
in the recycling system shown in Fig. 1. The other is to
use the neural network to model the characteristics of
each tank followed by the serial connection of these
neural networks according to the tank each modeled,
allowing the a monitoring of the entire recycling sys-
tem. In this study, it was difficult to model the overall
characteristic of all tanks by a single neural network
because each tank in the treatment system has different
role and characteristics. Thus, we used a serial neural
network that models the characteristic of each tank,
and the overall model of whole system was obtained by
the connection of each neural network. Fig. 2 shows a
proposed modeling protocol for the recycling system.
We used principal component analysis (PCA) as a pre-
processor of the neural network, which allowed the
reduction of the input to each neural network to 3
principal values from 9 independent parameters. Target
data of the neural network was the COD, total-P, or-
tho-P, SS and NH,"-N in the current tank.

To accomplish a successful modeling, the connec-
tivity within the neural networks was adjusted to best
predict the measured values obtained at the following
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Fig. 2. A schematic diagram describing training strategy for the neural
networks in this study.

treatment step using the values for SS, T-N, NH,*-N, T-
P, 0-P and COD as input variables.

RESULTS AND DISCUSSION

Population Dynamics of Microorganisms and
Their Roles

The most dominant heterotrophic bacteria in the
treatment system were 4 aerobic bacteria and 3 lactic
acid bacteria (LAB). The identified organisms were
TSA-1 (Brevundimonas diminuta), TSA-2 (Abiotrophia
defectiva), TSA-3 (Alcaligenes faecalis) and MRS-3
(Streptococcus sp). One of the most dominant aerobes
was identified as Alcaligenes faecalis TSA3 whose dif-
ferential characteristics are shown in Table 1. Popula-
tion dynamics of the representative aerobic bacterium,
Alcaligenes faecalis (TSA3), during the 47-day running
period is shown for each tank in Fig. 3. Interestingly,
Alcaligenes faecalis TSA3 was a predominant species
among aerobes in the aeration tank (10’~10° c.f.u./mL)
but was also observed in the influent and fermentation
tanks. Thus, the strain appeared to survive and grow
under anoxic (non-aerated) condition. Unpublished
data in our laboratories have shown that ammonium
ions (NH,") supplied as (NH,), SO, in the minimal salts
medium (citrate as a sole carbon source) can be utilized
as a sole nitrogen source for the growth of Alcaligenes
faecalis TSA3. This indicates a direct utilization of
NH,* by a heterotroph and hence removal of nitrogen
from the system by circumventing the nitrification
process, which uses large amounts of energy and oxy-
gen. It, therefore, appears that the ammonium uptake
and utilization could contribute to the nitrogen re-
moval in the treatment system (particularly in the aera-
tion tank). A reported species of Alcaligenes faecalis
could oxidize ammonia and produce NO,™ under aerobic
conditions and also denitrity nitrate ions via NO and
N,O gases under anoxic conditions [18-20]. Population
dynamics of the predominant lactic acid bacterium
(MRS1) during the 47-day running period is shown for
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Table 1. Differential characteristics of a Gram-negative bacte-
rial species TSA-3 isolated from the recycling treatment sys-
tem compared with a known species of Alcaligenes faecalis

Characteristic Alcaligenes faecalis** TSA3

Cram staining - -
Cell shape Rod, coccal rod, or cocci Rod
Oxidase + +
Catalase + +
Anaerobic growth - -
*Acid from :
D-Glucose - -
Mannitol - -
Inositol -
Salicin -
D-Melezitose -
L-Fucose -
D-Sorbose -
L-Arabinose - -
D-Ribose -
D-Sucrose -
Rhamnose -
Maltose
*Utilization of :
Valerate +
Citrate
2-Hydroxybutyrate
3-Hydroxybutyrate
4-Hydroxybenzoate -
[taconate - -
Suberate -
Malonate +
Acetate
DL-Lactate
5-Ketogluconate
3-Hydroxybenzoate
Clycogen
*Decomposition of
Histidine
L-Proline
L-alanine
L-Serine

P+ o+

+

44+

+ + +

i

Symbols: +, 90% or more positive; -, 0~10% positive
“Tested using API identification program (ID 32 GN: Bio Meri-
eux SA, France)
**Data from Bergey's Manual of Determinative Bacteriology (9th
ed.)

each tank in Fig. 4. The population of the strain MRS-
typel was more dominant in the influent and fermen-
tation tanks than in the aeration and sedimentation

tanks, indicating its facultative anaerobic characteristics.

The overall population density was in the range of 10*-
107 c.fu./mL.

The COD removal during the extent of the experi-
ment is shown, for each tank, in Fig. 5 with an overall
treatment efficiency of about 54%. The COD removal
may be mostly accomplished by biological oxidation or
absorption (or uptake) of organic compounds derived
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Fig. 3. Population dynamics of a heterotrophic bacterium (Al-
caligenes faecalis, TSA3) in the recycling treatment system
(®- Influent tank; O- Fermentation tank; ¥- Aeration tank;
V- Effluent tank A; W- Effluent tank D).
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Fig. 4. Population dynamics of a putative lactic acid bacter-
ium (MRS1) in the recycling treatment system (@®- Influent
tank; O- Fermentation tank; ¥- Aeration tank; V- Effluent
tank A; M- Effluent tank D).

from the livestock feeds since livestock wastewater con-
tains generally little xenobiotic compounds.

The phosphorus removal effect was also obvious in
the aeration and sedimentation tanks. The possible
mechanism for the phosphorus removal would be an
uptake of phosphorus by cells under aerobic conditions
and a subsequent sedimentation of the cells. Surplus
phosphorus that is taken up may be transformed to
poly-phosphorus as a storage material within the cells
[21]. A discharge of phosphorus is known to occur un-
der anaerobic conditions [22,23].

The best removal effect of suspended solids was ob-
served in the aeration tank. This seems to be due to the
transport hole between the fermentation and aeration
tanks, which only passed the treated water, not the
sedimented solids.

Principal Component Analysis

It was rather difficult to obtain enough training data
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Fig. 5. Dynamics of chemical oxygen demand (COD) removal
in the recycling treatment system (®- Influent tank; O- Fer-
mentation tank; W-Aeration tank; V- Effluent tank A; ® -
Effluent tank D).

because the biological processes of the microorganisms
usually take a long time to reach a stable treatment ef-
ficiency. Moreover, the input and output dimensions of
the neural networks was 9 and 5, respectively. Training
data measured over 47 days, was not enough to figure
out the complex correlation between the input and
output in each tank, and it was also hard to formulate a
generalization. Moreover, there were some noises in
data due to measuring error or unstable bioprocesses. In
order to remove the noisy data and also reduce the in-
put and output dimensions, we first used the principal
component analysis (PCA) method to analyze the train-
ing data. PCA projects high dimensional data onto low
dimensional coordinates that consist of the principal
component axes. In other words, PCA finds a few or-
thogonal coordinates that can best express the varia-
tions in the high dimensional data and then represents
the high dimensional data on the new orthogonal coor-
dinates with low dimensional equivalents. To find new
orthogonal coordinates for the measured data, we
should calculate eigen-values from the correlation ma-
trix of the measured data, and then select a few eigen-
values after ordering them according to their magni-
tudes. Finally, the new orthogonal coordinates become
eigen-vectors for the selected eigen-values. Plotting the
values to be represented by eigen-vectors on planes
makes it easy to understand the correlation between
each high dimensional data set.

In this study, we used three axes as orthogonal coor-
dinates. These axes were obtained by analysis of the
PCA analysis to remove the data through one-to-many
mapping. Fig. 6 shows the PCA results for the measured
data in the aeration tank. The X-axis denotes the map-
ping result according to the first eigen-vector, and Y-
axis denotes the result with the second eigen-vector.

The number of each point in Fig. 6 indicates the day. Fig.

7 showed the PCA results for target data measured in
sedimentation Tank A, and each axis was same with
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Fig. 6. Principal component analysis of the input from the
aeration tank data during the 47 days’ running period.
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Fig. 7. Principal component analysis of the output from the
aeration tank data during the 47 days’ running period.

that of Fig. 6. As shown in Figs. 6 and 7, there were sev-
eral data with one-to-many mapping property so that
we removed these values in the training process.

Computational Results

Among 47 training data, we reversed the 6th, 11th,
16th, 21st, 26th, 31st, 36th, 41st, 46th, 47th data sets
for the training phase, which were randomly selected
and used as test data to evaluate the generalization per-
formance of the neural network. We used one hidden
layer with 30 nodes that were determined by an ad hoc
method. The weighted values were adjusted by the er-
ror back-propagation algorithm.

Through computational experiment we confirmed
that the neural network successfully imitated each tank
of the treatment system and approximated the target
values of the input pattern well. Table 2 shows the pre-
dicted values for T-P, o-P and SS, for the 46th and 47th
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Table 2. Predicted results of T-F, ortho-P and SS by the trained
neural networks on the 46th and 47th days*

T-P ortho-P

Day Tank Values (mg/L) | (mg/L)

SS (mg/L)

M 36.00 30.43 0.560

Influent
P 35.95 31.01 0.563
. M 28.00 27.31 0.305
Fermentation
P 27.70 27.20 0.320
46th | Aeration M 22.00 22.00 0.185
P 21.80 18.10 0.130
Sediment 1 M 22.00 21.00 0.175
P 24.10 23.10 0.220
Sediment 4 M 20.00 23.00 0.180
P 34.10 38.90 0.210
M 43.00 53.84 0.880
Influent
P 28.50 33.80 0.172
. M 36.00 43.85 0.395
Fermentation
P 39.10 31.50 0.183
47th | Aeration M 24.00 39.00 0.275
P 22.00 24.70 0.269
Sediment 1 M 22.00 36.00 0.295
P 21.40 23.50 0.130
Sediment 4 M 25.00 39.00 0.230
P

21.60 27.10 0.155

* M measured values; P predicted values by neural networks.

days, by neural networks that were serially connected
to model the recycling system. In the Table, for each
tank, the upper rows represented the measured values
and lower rows were the results predicted by the neural
networks. Fig. 8 show the estimation of the COD and
NH,*-N values, respectively. The numbers on the X-axis
represent the tanks from 46th day’s influent tank to
47th day’s sedimentation tank D. The numbers at the
X-axis indicate influent tank (1, 6), fermentation tank
(2, 7), aeration tank (3, 8), sedimentation tank A (4, 9),
and sedimentation tank D (5, 10). As shown in Fig. 8
and Table 2, the proposed neural networks could
successfully model the treatment according to the
population densities of the microorganisms.

CONCLUSION

We have proposed a novel monitoring system for a
piggery slurry recycling treatment system. Multi-layer
neural networks combined with PCA successfully mod-
eled the tank characteristics. It was possible to train the
neural network with the given training data by reduc-
ing the number of input dimensions with a minimal
loss of information and to remove excess noise with the
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Fig. 8. Prediction for various treatments COD (A) and NH,*-
N (B) for 2 days (Days 46 and 47) by the neural networks
model (@- measured data; O- predicted data). The numbers at
the X-axis indicate influent tank (1, 6), fermentation tank (2,
7), aeration tank (3, 8), sedimentation tank A (4, 9), and
sedimentation tank D (5, 10).

one-to-many mapping property. The proposed model
may be useful in developing a reverse neural network
model that could be used to determine optimal micro-
bial densities critical for a desired quality level of treated
wastewater.
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