DOI QR코드

DOI QR Code

Effects of Continental Evaporation for Precipitation Over East Asia in the Past and the Future of HadGEM2-AO Climate Model

HadGEM2-AO 기후모델에 따른 과거와 미래의 동아시아 강수량에 대한 육지 증발량의 영향

  • Kim, Jin-Uk (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Lee, Johan (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Boo, Kyung-On (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Shim, Sungbo (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Kim, Jee-Eun (Climate Research Division, National Institute of Meteorological Sciences) ;
  • Byun, Young-Hwa (Climate Research Division, National Institute of Meteorological Sciences)
  • 김진욱 (국립기상과학원 기후연구과) ;
  • 이조한 (국립기상과학원 기후연구과) ;
  • 부경온 (국립기상과학원 기후연구과) ;
  • 심성보 (국립기상과학원 기후연구과) ;
  • 김지은 (국립기상과학원 기후연구과) ;
  • 변영화 (국립기상과학원 기후연구과)
  • Received : 2016.07.01
  • Accepted : 2016.09.28
  • Published : 2016.12.31

Abstract

Land evaporation contribution to precipitation over East Asia is studied to understand terrestrial moisture source of continental precipitation. Moisture recycling of precipitation relying on terrestrial evaporation is estimated based on the analysis method of Van der Ent et al. (2010). We utilize HadGEM2-AO simulations for the period of 1970~1999 and 2070~2099 from RCP8.5. Globally, 46% of terrestrial precipitation is depending from continental evaporation. 58% of terrestrial evaporation returns as continental precipitation. Over East Asia, precipitation has been affected by local evaporation and transported moisture. The advection of upwind continental evaporation results from the prevailing westerlies from the midwestern of Eurasian continent. For the present-day period, about 66% of the precipitation over the land of East Asia originates from land evaporation. Regionally, the ratios change and the ratios of precipitation terrestrial origin over the Northern inland and Southern coast of East Asia are 82% and 48%, respectively. Seasonally, the continental moisture recycling ratio is larger during summer (JJA) than winter (DJF). According to RCP8.5, moisture recycling ratio is expected to change. At the end of the 21st century, the impact of continental moisture sources for precipitation over East Asia is projected to be reduced by about 5% compared to at the end of 20th century. To understand the future changes, moisture residence time change is investigated using depletion and replenishment time.

Keywords

References

  1. Allan, R. P., C. Liu, M. Zahn, D. A. Lavers, E. Koukouvagias, and A. Bodas-Salcedo, 2014: Physically consistent responses of the global atmospheric hydrological cycle in models and observations. Sur. Geophys., 35, 533-552. https://doi.org/10.1007/s10712-012-9213-z
  2. Bisselink, B., and A. J. Dolman, 2008: Precipitation recycling:moisture sources over Europe using ERA-40 data. J. Hydrometeor., 9, 1073-1083, doi:10.1175/2008JHM962.1.
  3. Bosilovich, M. G., and S. D. Schubert, 2002: Water vapor tracers as diagnostics of the regional hydrologic cycle. J. Hydrometeor., 3, 149-165. https://doi.org/10.1175/1525-7541(2002)003<0149:WVTADO>2.0.CO;2
  4. Bosilovich, M. G., S. D. Schubert, and G. K. Walker, 2005: Global changes of the water cycle intensity. J. Climate, 18, 1591-1608. https://doi.org/10.1175/JCLI3357.1
  5. Budyko, M. I., 1974: Climate and Life. Academic Press, 508 pp.
  6. Cho, M. H., K. O. Boo, G. M. Martin, J. Lee, and G. H. Lim, 2015: The impact of land cover generated by a dynamic vegetation model on climate over east Asia in present and possible future climate. Earth Syst. Dynam., 6, 147-160, doi:10.5194/esd-6-147-2015.
  7. Collins, W. J., and Coauthors, 2008: Evaluation of the Had-GEM2 model. Hadley Centre Technical Note 74, 47 pp. [Available online at http://www.metoffice.gov.uk/learning/library/publications/science/climate-science.].
  8. Dirmeyer, P. A., and K. L. Brubaker, 2007: Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor. J. Hydrometeor., 8, 20-37, doi:10.1175/JHM557.1.
  9. Dirmeyer, P. A., K. L. Brubaker, and T. DelSole, 2009a: Import and export of atmospheric water vapor between nations. J. Hydrol., 365, 11-22, doi:10.1016/j.jhydrol.2008.11.016.
  10. Dirmeyer, P. A., C. A. Schlosser, and K. L. Brubaker, 2009b: Precipitation, recycling, and land memory: an integrated analysis. J. Hydrometeor., 10, 278-288, doi:10.1175/2008JHM1016.1.
  11. Dominguez, F., P. Kumar, X. Z. Liang, and M. Ting, 2006:Impact of atmospheric moisture storage on precipitation recycling. J. Climate, 19, 1513-1530, doi:10.1175/JCLI3691.1.
  12. Douville, H., F. Chauvin, S. Planton, J. F. Royer, D. Salas-Melia, and S. Tyteca, 2002: Sensitivity of the hydrological cycle to increasing amounts of greenhouse gases and aerosols. Clim. Dynam., 20, 45-68, doi:10.1007/s00382-002-0259-3.
  13. Hartmann, D. L., 1994: Global Physical Climatology. Academic Press, 411 pp.
  14. Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686-5699. https://doi.org/10.1175/JCLI3990.1
  15. Jhun, J. G., and E. J. Lee, 2004: A new east Asian winter monsoon index and associated characteristics of the winter monsoon. J. Climate, 17, 711-726. https://doi.org/10.1175/1520-0442(2004)017<0711:ANEAWM>2.0.CO;2
  16. Keys, P. W., R. J. Van der Ent, L. J. Gordon, H. Hoff, R. Nikoli, and H. H. G. Savenije, 2012: Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions. Biogeosciences, 9, 733-746, doi:10.5194/bg-9-733-2012.
  17. Kunstmann, H., and G. Jung, 2007: Influence of soil-moisture and land use change on precipitation in the Volta Basin of West Africa. Int. J. River Basin Manage., 5, 9-16. https://doi.org/10.1080/15715124.2007.9635301
  18. Li, X. Z., Z. P. Wen, and W. Zhou, 2011: Long-term change in summer water vapor transport over South China in recent decades. J. Meteor. Soc. Japan, 89A, 271-282. https://doi.org/10.2151/jmsj.2011-A17
  19. Martinez, J. A., and F. Dominguez, 2014: Sources of atmospheric moisture for the la plata river basin. J. Climate, 27, 6737-6753, doi:10.1175/JCLI-D-14-00022.1.
  20. Savenije, H. H. G., 1995: New definitions for moisture recycling and the relationship with land-use changes in the Sahel. J. Hydrol., 167, 57-78, doi:10.1016/0022-1694(94)02632-L.
  21. Soden, B. J., D. L. Jackson, V. Ramaswamy, M. D. Schwarzkopf, and X. Huang, 2005: The radiative signature of upper tropospheric moistening. Science, 310, 841-844. https://doi.org/10.1126/science.1115602
  22. Stocker, T. F., and Coauthors, 2013: Technical Summary. In T. F. Stocker et al. Eds., Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 33-115.
  23. Trenberth, K. E., 1998: Atmospheric moisture residence times and cycling: implications for rainfall rates and climate change. Climatic Change, 39, 667-694. https://doi.org/10.1023/A:1005319109110
  24. Trenberth, K. E., and L. Smith, 2005: The mass of the atmosphere:a constraint on global analyses. J. Climate, 18, 864-875. https://doi.org/10.1175/JCLI-3299.1
  25. Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth's global energy budget. Bull. Amer. Meteor. Soc., 90, 311-323, doi:10.1175/2008BAMS2634.1.
  26. Van der Ent, R. J., H. H. G. Savenije, B. Schaefli, and S. C. Steele-Dunne, 2010: Origin and fate of atmospheric moisture over continents. Water Resour. Res., 46, W09525, doi:10.1029/2010WR009127.
  27. Van der Ent, and H. H. G. Savenije, 2011: Length and time scales of atmospheric moisture recycling. Atmos. Chem. Phys., 11, 1853-1863, doi:10.5194/acp-11-1853-2011.
  28. Van der Ent, L. Wang-Erlandsson, P. W. Keys, and H. H. G. Savenije, 2014: Contrasting roles of interception and transpiration in the hydrological cycle - Part 2: Moisture recycling. Earth Syst. Dynam., 5, 471-489, doi:10.5194/esd-5-471-2014.